In-Production Characterization of an Open Source
Serverless Platform and New Scaling Strategies

Nima Nasiri Nalin Munshi Simon Moser
University of British Columbia University of British Columbia IBM
Marius Pirvu Vijay Sundaresan Daryl Maier
IBM IBM IBM
Thatta Premnath Norman Béwing Sathish Gopalakrishnan
IBM IBM University of British Columbia
Mohammad Shahrad

University of British Columbia

Abstract

Serverless computing has become more popular and evolved
to support more complex tasks than the original Function
as a Service (FaaS) model. The design of serverless systems
has advanced to accommodate application demands and of-
fer flexibility. Careful characterization of modern serverless
systems and understanding of current gaps are warranted.
Publicly available datasets on workloads in select produc-
tion serverless systems do not fully represent all offerings
or capture traces at the required time resolution to identify
changes in application-level request-response patterns.

We characterize — and make available — production traces
from a major public serverless provider with over 1.9 billion
invocations spanning over two months. Our dataset is the
first to characterize an open-source platform with large-scale
trace data, millisecond-scale arrival times, and user config-
urations for pod concurrency and minimum pod scaling.
Using this dataset, we provide new insights for optimizing
serverless platforms.

With our insights, we design and implement FeMux, a
serverless lifetime management system. FeMux multiplexes
lightweight forecasters and uses a Representative Unified
Metric (RUM) to decouple metrics from serverless platform
implementations. This allows providers like us to update
metrics flexibly or support multiple system objectives simul-
taneously. We prototype FeMux on the Knative platform and
evaluate its benefits.

CCS Concepts: -« Computer systems organization —
Cloud computing; - Computing methodologies — Learn-
ing paradigms.

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.

EUROSYS °26, Edinburgh, Scotland UK

© 2026 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-2212-7/26/04
https://doi.org/10.1145/3767295.3769377

Keywords: Cloud Computing, Serverless, Resource Manage-
ment, Forecasting, Characterization

1 Introduction

Cloud providers strive to deliver serverless platforms that
combine scalability and cost-efficiency through pay-per-use
billing, while minimizing resource waste. At the same time,
providers must meet rising performance expectations—such
as low platform delay, rapid scaling, and fast execution. This
inherent tension between efficiency and performance has
shaped the evolution of serverless platforms.

Serverless computing began with the Function-as-a-Service
(FaaS) model, where users deployed individual functions and
providers handled all provisioning. Since then, the serverless
model has expanded to support a much broader range of
applications—from simple functions to long-running batch
jobs and complex, user-defined containers. This transition,
referred to by practitioners as “Serverless 2.0”, reflects a
shift away from simple function execution toward support-
ing general-purpose applications, as seen in offerings like
Google Cloud Run and IBM Cloud Code Engine [12, 16, 22].
Today’s platforms let users deploy custom containers capable
of concurrent executions and multilingual logic. Configura-
tion options such as minimum scale and concurrency limits
allow users to manage cold starts and resource reuse more
directly.

Motivated by these shifts in serverless usage and platform
capabilities, this paper presents a fresh characterization of
modern serverless workloads. We characterize and open-
source! a large-scale dataset from the serverless offering of a
major public cloud provider, IBM. Spanning two months and
capturing over 1.9 billion invocations, our dataset is the first
to include millisecond-level timing data, up/down scaling
events, invocation-to-pod mappings, and detailed user con-
figurations for CPU, memory, and concurrency. Uniquely,

Uhttps://github.com/ubc-cirrus-lab/ibm-cloud-code-engine-traces

https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3767295.3769377
https://github.com/ubc-cirrus-lab/ibm-cloud-code-engine-traces

our trace is derived from an open-source platform — Kna-
tive [30] — allowing researchers to reproduce behavior and
experiment directly using local deployments. While prior
datasets—such as Azure’s 2019 and 2021 traces [45, 57], or
Huawei’s more recent traces [26, 27]—have catalyzed re-
search, their limited resolution, incomplete metadata, and
narrow application scope reduce their applicability to today’s
evolving workloads. Our dataset yields new insights with
implications for serverless system design and management.
These insights stem both from the fidelity of our data and
from the evolving behavior of serverless workloads—some of
which challenge prevailing assumptions. For example, while
recent literature suggests that cold start times are improving,
our logs reveal that tail cold start times are actually increasing.
This trend aligns with the shift toward fully managed, multi-
runtime containers [27], which can introduce heavier startup
paths. We also observe that most workloads are configured
with non-zero minimum scale—suggesting that users often
prioritize latency over efficiency, even at increased cost.

We translate these insights into two system-level princi-
ples for lifetime management: (1) decoupling platform opti-
mization from specific metrics, and (2) adapting forecasters
to workload characteristics, using our Representative Uni-
fied Metric (RUM). We prototype these ideas in FeMux, a
lifetime management system built atop Knative [30], which
uses RUM to optimize across shifting metrics and traffic
patterns via lightweight forecaster multiplexing.

Our main contributions include:

o The first large-scale serverless dataset from a produc-
tion open-source platform (Knative): over 1.9 billion
invocations spanning two months, with millisecond-scale
timing, pod mappings, user-specified resource settings,
and concurrency configurations—surpassing prior traces
in fidelity and breadth.

e A modular, low-latency forecasting multiplexer-based

lifetime manager (FeMux) that outperforms prior

work: Compared to FaasCache, IceBreaker, and Aquatope,

FeMux reduces cold starts by up to 64%, lowers memory

waste by up to 25%, and improves overall optimization ob-

jectives by 30-78%. Our approach uses supervised learning
and has acceptable training times (a few hours) as well as
short inference times (a few milliseconds) for deployment.

A flexible optimization framework (RUM) that en-

ables simultaneous support for multi-tier objectives:

FeMux supports dynamic prioritization (e.g., latency vs.

cost), achieving a 45% cold-start-time reduction for latency-

sensitive workloads with 35% lower memory waste overall.

Real-system validation through a Knative prototype:

We integrate FeMux into Knative Serving and evaluate

our implementation. FeMux supports over 1,200 applica-

tions per forecasting pod with a p99 forecasting latency
of 25 ms—demonstrating feasibility in practical settings.

2 Background
2.1 Evolution of Serverless Compute

FaaS was the initial form of serverless compute, where users
upload function and the provider provisions resources for
execution upon invocation. We use invocation to refer to
both user requests and other triggers, e.g., timers or system
events. Serverless workloads typically execute in containers
or micro-VMs [2], where platforms such as Openwhisk [38]
and Knative [30] orchestrate invocations, scheduling/load
balancing, and adaptively scale instances based on load. Once
a container is active, the language runtime is set up by pulling
an image. For languages such as Java, the language runtime
is heavy and can be slow to start (e.g., >1 s), while interpreted
languages such as Python and Javascript are faster [48].

The FaaS model demonstrated the core benefits of server-
less computing, such as an event-driven architecture, high
scalability from zero instances, and a pay-per-use model.
However, provider-side limitations on programming lan-
guages, containerization, and APIs were limiting the pos-
sibility of expansion to a broader set of applications. As a
result, over the past five years, the notion of what serverless
is has slowly grew to well beyond the original FaaS model.
The “idea of serverless functions replacing the traditional web
frameworks or APIs has almost disappeared” [16]. This shift is
referred to as “Serverless 2.0” among practitioners, and can
be seen in new serverless offerings such Google Cloud Run
(vs. Google Cloud Functions) and IBM Cloud Code Engine
(vs. IBM Cloud Functions) [12, 22].

It may appear that FaaS provides the same workload flex-
ibility as to Serverless 2.0, but the difference is non-trivial.
FaaS platforms (e.g., AWS Lambda) are designed to takes
user code and run it on pre-initialized container images for
standard runtimes (e.g., Python, Go). Custom runtimes are
available, but are not as flexible as custom containers. Mod-
ern serverless platforms, or container-as-a-service platforms
(e.g., AWS Fargate) offering serverless capabilities (e.g., pay-
per-use, event-driven, scale down to zero) can pull custom
containers. While increasing initialization overheads, they
allow for multilingual applications, custom base images, cus-
tom operating systems, and multi-container pods as unit of
scaling. Apart from the expanded use cases, these services
typically include more configurability options with indepen-
dent memory/CPU allocation, concurrent execution on a
single instance, longer runtimes, and more storage.

IBM’s workloads comprise of approximately 75% appli-
cations, 15% batch jobs, and 10% functions, which are run
simultaneously on top of the same platform (Knative). Ap-
plications, having the highest flexibility, are uploaded using
container images and can make up the entire back-end sys-
tem for users, while functions are uploaded as code snippets.
Users can configure application pods to have a concurrency
limit of 1 or more (default 100), while each function instance

N o o Iy
ES o o =)
L L s !

Relative Hourly Invocations to Peak
o
o

Azure ’19 | Azure '21 Huawei Huawei '24

[45] (57 |Pub22[26] | [27] IBM
Req. Time Accuracy min ms min min* ms
. . ms ms s ms
Execution Durations (Daily) | (Per Req.) N/A (PeruMixL) (Per Req.)
Platform Delay N/A N/A N/A ps ms
CPU/Mem. Allocation No No No Yes Yes
CPU/Mem. Usage Yes/No No No Yes No

Concurrency &

Min. Scale Configs N/A N/A N/A No Yes
Scale Up/Down Events No No No Yes/No Yes
Duration (days) 14 14 26 31 62
Total # Invocations 12.5B 2M 25B 85B 19B
1229 0105 012 O0L19 0L26 0202 02/09 02/16 02/23 Open Source Platform X X X X v

Time

Figure 1. Across 62 days, there is a peak-to-trough span
of approximately 60% of weekdays and 40% on weekends
relative to peak traffic. Apart from increased traffic during
weekdays, there is a seasonal increase in traffic in January.

handles at most one execution concurrently. Further, func-
tion containers are initialized using standard images complex
applications use custom images which can take longer to
load (§3.3). Batch jobs don’t receive HTTP inbound requests
and are triggered manually or by events (e.g., timers).

2.2 Resource Management Policies

Several avenues of prior work tackle a range of resource
management problems, including: managing the lifetime and
scaling of resources, reducing cold start durations, schedul-
ing functions to resources, resource sharing, and right-sizing
resource configurations to avoid over-allocation. Lifetime
management policies use forecasting or heuristics to de-
cide when to scale resources [20, 40, 45, 60]. More recently
there are policies exploring scaling resources by layers rather
than whole containers [56]. Scaling decisions are split be-
tween predictively scaling resources ahead of invocation
(pre-warming), and keeping resources alive when expect-
ing future traffic (keep-alive). Schedulers assign functions
to resources, with some systems handling independent func-
tions [28], and more recent work tackling complex appli-
cations which are organized as Directed Acyclic Graphs,
and the consideration required for pre-warming, data move-
ment, resource sharing, and co-location [33, 34]. Through
improved lifetime management and container scheduling,
cloud providers can improve both service times and resource
efficiency. Since variable traffic and user misconfiguration
lead to over-allocating resources, there are tools that help
users right-size their resource configurations [9, 17, 36], and
prior work that adjusts resource allocation based on his-
torical consumption data for each workload [60]. Providers
typically bill for resource allocation as opposed to consump-
tion, a practice that can seemingly profit from users over-
allocating. Nevertheless, such over-allocation translates into
higher opportunity costs for the provider throughout the
execution and post-execution idle phases.

Table 1. Comparison of existing serverless datasets
with ours. Our dataset spans the longest, has complete
millisecond-scale data, and includes data for both Memory
and CPU configuration data at the cost of missing resource
usage statistics. “Huawei "24 includes microsecond-scale
invocation-level data (<1B requests) for one day, and plat-
form delays for each cold start event at the component-level.

3 Characterization
3.1 The Need for New Serverless Characterization

Table 1 summarizes four publicly released serverless datasets,
and refer to the Huawei datasets from the year they were
collected. We provide a new dataset to provide the research
community with a more holistic view of the serverless land-
scape, and to overcome existing limitations:

1. New perspective: A limitation of prior serverless datasets
is their reliance on only two providers: Microsoft and
Huawei. We address this gap by providing data collected
from a third major public cloud serverless provider.

2. Open-source platform: Prior industry datasets are gath-
ered from proprietary serverless platforms. We provide
the first dataset gathered from an open source server-
less system (Knative [30]). This allows the community to
replay traces meaningfully on a publicly known platform.

3. Serverless 2.0: Existing datasets, except for Huawei "24 [27],
strictly describe FaaS workloads, which do not capture the
wider range of possibly longer running and more complex
workloads supported by Serverless 2.0.

4. High volume of fine-grained data: Azure ’19 [45] and
Huawei "22 [26] datasets have minute-scale invocation
data, providing per-minute invocation counts (1440 daily
data points). Azure *21 and Huawei ’24 datasets include
trace data at millisecond and microsecond granularities,
but only capture under 2 M requests, and 1 day of data,
respectively, in those granularities. We provide high vol-
ume (1.9 B) of millisecond-granularity data, for over two
months (Fig. 1).

Our characterization highlights immediate optimization
opportunities for production-grade serverless platforms. Our
dataset, to be open sourced with this paper, comprises 1,283
traces from a subset of the total projects running on IBM’s
second most popular sub-region, with 75% of traffic volume
relative to the most popular sub-region. A limitation of our

Inter-Arrival Times

1.0
%) e
? /
S 081 <
~ /
S /
= 0.6 q 7
“6 I, —
J 4
c 0.4 7
S [—— Average
=1 -)
g 029 ’,’ Median
Pt e --- p99
= T T T <1s 1s-lm EEE >1m
1072 10° 102 104 106

Inter-Arrival Time (s)

Figure 2. (Left) The distribution of median IAT values shows
a significant gap compared to the 99th percentile IAT values.
(Right) More than 94% of all IAT values are sub-second.

characterization is that only batch jobs can be distinguished-
we refer to functions and applications as workloads since
they cannot be separated based on the available data. Our
reported numbers on the fraction of each workload type are
based on all serverless cloud workloads, as opposed to the
subset included in this dataset. In the rest of this section, we
identify several lines of research for lifetime management
policies that optimize cold starts and resource efficiency,
and right-sizing tools and dynamic resource allocation poli-
cies which help users efficiently configure resources and
providers to improve utilization. Readers interested in more
insights are referred to the supplementary material.

One of the limitations of our dataset is the lack of system
utilization data, but this aspect was not part of the system’s
logging facility. Our traces provide request data, including
invocation time, application, pod, and execution time, along-
side daily per-app configuration metadata, including pod
concurrency. These are sufficient to reconstruct the scaling
behavior of our workload.

3.2 Second-Scale Resource Management

Invocation Inter-Arrival Times (IATs). We observe that
over 94.5% of invocations have sub-second IATs, and 5.2%
have sub-minute IATs (Fig. 2-Right). Traffic patterns can vary
significantly across workloads and throughout the lifetime
of each application (Fig. 2-Left): 46% and 86% of workloads
have sub-second and sub-minute median IATs, respectively.
As 99.8% of the total traffic has sub-minute IATs, and over
86% of workloads have sub-minute median IATs, there is
potential for fine-grained resource management.

The disparity between median and 99th percentile inter-
arrival times for over 95% of workloads further indicates
the intermittent nature of traffic: in addition to fine-grained
resource management, there is still a necessary consideration
for long periods with no traffic. By considering the coefficient
of variation (CV) for inter-arrival times, we approximate
the variability of workloads, where a CV larger than one
represents high variability (o > p). Over 96% of workloads

——- Azure 2019 Azure 2021 —— Huawei 2024 ----- IBM
1.0

0

< 2

‘_g § 0.8

5 5

= x 0.6
o

G 5

c c 0.4

S s

o 9]

] © 0.2

[B i

s

0.0 - - . . .
1073 1072 107* 10° 10 102 10°
Execution Time (s)

0.0 T ™ T T
1073 1072 107* 10° 10t 102
Average Execution Time (s)

Figure 3. Newer datasets (ours and Huawei *24) show shorter
execution times. 82% of our applications and 96% of invoca-
tions have sub-second average execution times.

1.0
wn 0T AVg //”
B osA Median e
o N
o~ p99
S 06
go.
G
c 0.4
o
S
& 0.2
(..
[
0.0 Lo e ; ; ; ;
1073 1072 107! 100 10! 102 103

Execution Time (s)

Figure 4. High exec time variability in our workloads.

from our dataset have a CV above 1, while 78% of workloads
from the Azure "21 dataset have high variability?.

Lastly, Azure ’19 characterization reported that 19% of
applications had an average IAT of less than one minute,
and 45% had an average IAT less than an hour [45]. In our
workloads, these figures have increased to 26% and 69%,
respectively, indicating increased traffic volumes for mid-
popularity serverless applications. This can be attributed to
the increased adoption of serverless among developers.

Execution Times. We examine the distribution of execu-
tion times from our trace and previously available serverless
execution time data (Fig. 3). The Azure *19 dataset only offers
daily per-app average statistics, which is why it is missing
on the right subfigure. We observe shorter execution times
for our workload and the Huawei "24 workload relative to
prior years. 82% of workloads from our dataset have average
execution durations under one second. This fraction was
lower in the Azure ’19 dataset, at 70% [45]. This trend has
been reported before; a 2021 Datadog report found that the
median execution time of AWS Lambda functions dropped
from 130 ms to 60 ms between 2019 and 2020 [13]. Several
factors likely contribute to the ongoing reduction in server-
less execution times: 1) developers’ growing proficiency with
the serverless paradigm, including breaking down complex

20nly the Azure °21 dataset and ours include precise invocation times
(Table 1), enabling us to calculate the CV values of IATs.

le7

g
=)

N
o

’/

wn ’ﬁ

g o

:3 0.8 £

p E 15

‘;’ 0.6 - I
— 1-min Avg o]

5 d 10

c 04 5-min KA b

-% 02 —— FFT 10-s Sos

@ —— FFT 60-s =

= e

o
o
o
=}

+ T T T T T
0 20 40 60 80 100

W 0 0
Cold Start (%) M (@

o Nq‘,\-‘““\
Figure 5. (Left) FFT with a 10-second timestep achieves the
lowest fraction of cold starts across all workloads, and (Right)
reduces total cold start durations by 60% and 38% relative to a
1-min moving average and 5-minute keep-alive respectively.

functions into smaller stages for independent scaling; 2) the
increased adoption of serverless workflows [34]; and 3) the
rising use of serverless for latency-sensitive, user-facing ap-
plications.

We also observe significant execution duration variabil-
ity within each workload, as the median value for average
workload execution time is 10 ms while the median value for
p99 workload execution time is 800 ms (Fig. 4). Additionally,
some workloads experience longer request completion times
during higher traffic periods (Appendix B.2).

Serverless platforms immediately scale their first con-
tainer. However, providers such as AWS and Huawei, and
prior work [20, 40, 45, 60], scale down containers one or
more minutes after the container starts idling. We evaluated
the scaling behavior of AWS Lambda by sending requests to
a variable execution function with inter-arrival times rang-
ing from 1 to 8 minutes. We observed that all requests with
an idle time (completion to next arrival) exceeding 6 minutes
were cold. Similarly, Joosen et al. [27] report that Huawei’s
serverless platform uses a 1-minute keep-alive policy. Kna-
tive’s default autoscaling policy adjusts the number of pods
every two seconds, but uses a 1-minute sliding window for
determining the number of pods to scale.

Predictive scaling policies with more granular timescale
can reduce container lifetimes, while also preventing cold
starts. We explore scaling pods in 10-second time steps us-
ing an event-based simulator. Per-app traffic is captured
by an application’s average concurrency, as used in Kna-
tive [30]. We use a Fast Fourier Transform (FFT) forecaster
from prior work [26, 40] to evaluate the benefits of fore-
casting, with both 60-second (minute-scale) and 10-second
scaling frequencies to evaluate finer-grained lifetime man-
agement. Platforms such as Knative passively adjust the
number of pods based on traffic rate every two seconds, so a
10-second predictive scaling period would not be excessive.

Sub-Minute Scaling. We observe that predictive scaling
reduces the fraction of cold starts across all workloads (Fig. 5-
Left). FFT with a 10-second timestep reduces total cold start
by 60% the 1-minute moving average with 2-second scaling
intervals, used by Knative’s autoscaling policy (Fig. 5-Right).

" All Requests Requests with Platform Delay > 10ms
L 1.00 1.00
@© —
S 0.754 0.75 9
<
S 0501 Avg 0.50 4
s 0251 p99 0.254
©
L 0.00 " 0.00
1.00 1.00

n

T 0751 0.754
&

© 0.50 4 0.50 4
o

© 0.254 0.254
w

0.00 T T T T T 0.00 T T T T
10731072 107! 10° 10* 10? 103 1072 107! 10° 10' 10?2 10°
Platform Delay (s) Platform Delay (s)

Figure 6. Most executions experience short platform delays,
but the tails are very long, exceeding 300 s.

It also reduces total cold start duration by 38% compared to
a simple 5-minute keep-alive policy used in AWS Lambda.
Further, FFT with a 10-second timestep improves cold starts
across all workloads relative to a 60-second timestep, and
reduces the aggregate cold start duration by 11%. Additional
resource allocation for all of these policies is less than 1%,
due to the prevelance of user-configured minimum scale
pods (§3.4).

Implication 1: Most inter-arrival and execution times are
sub-second, while existing lifetime management systems scale
down in minute-level. High frequency predictive manage-
ment can improve resource efficiency and performance.

3.3 Platform Delay

We characterize platform delay—the difference between to-
tal service time and execution time—which captures the
combined impact of cold starts, queuing, inter-component
latency, and network delays. Unlike prior studies from pro-
prietary platforms like Huawei’s [26, 27], our analysis is
based on a Knative-enabled platform.

We explore platform delay distributions across workloads
(Fig. 6-top) and invocations (Fig. 6-bottom). The left plots
include all data; the right focus on delays over 10 ms for
clarity. Most executions have delays under 1 ms, and 73% of
workloads have 99th-percentile delays below 10 ms.

Two main factors, explored further (§3.4), contribute to
these low delays: (1) Serverless 2.0 platforms use many-to-
one execution models, where each pod handles many con-
current requests—reducing the need for frequent scaling; (2)
Minimum pod counts ensure baseline resource availability.

Long-tail delays, however, remain. About 20% of work-
loads have p99 delays exceeding one second, with extremes
above 400 s. Such delays are largely caused by cold starts
from custom containers, which involve the loading and ini-
tialization of complex dependencies. Joosen et al. observed
similar cold starts over 10 s with custom images on Huawei’s
platform [27].

Implication 2: While serverless systems provide low delays
for most workloads, the complexity of modern applications
leads to long-tail latency. Mitigating these tails requires new
techniques and necessitates lifetime managers to consider
cold start durations—not just cold start counts or percentages.

3.4 Resource Configuration Patterns

Azure2019 included daily memory consumption statistics [45],
and Huawei2024 includes consumption and allocation for

both function and complex application workloads, but this

study is the first to include resource allocation along-
side concurrency and minimum scale configurations.

This information sheds light on user behavior, as well as

on opportunities for autoconfiguration and dynamic right-
sizing. The data suggests that users change configurations

for up to 10% of workloads; we report median configuration

across 62 days (Fig. 7). We discuss each one next.

CPU and Memory Allocation. Default configuration for
CPU is 1 vCPU. 44.8% of workloads were configured with
less than 1 vCPU, and only 4.4% with more than 1 vCPU (up
to 8 vCPUs). The default memory configuration is 4 GB. We
see more memory reduction from the default config compare
to CPU: 53.6% of workloads requested less than 4 GB, and
4.5% went beyond this limit (up to 48 GB). A respective 50.8%
and 41.9% of CPU and memory allocations at their default
value, which may indicate over-allocation of resources for
those workloads. During the 62-day period, 2.3% and 3.3% of
workloads updated their CPU and Memory configurations,
respectively, with an approximately even number of users
increasing/decreasing up to 2GB of memory and 0.5 vCPU.

Minimum Pod Scale. Not long ago, FaaS developers who
needed to keep their containers warm had to send artificial
traffic [32]. Serverless 2.0 support provisioned concurrency:
allowing users to configure a minimum number of warm
containers to mitigate cold starts [3, 25]. The default value
for this option is zero in our system, which permits the
number of pods to scale down to zero. However, we see that
58.8% of workloads requested to have one (53.8%) or more
(4.9%) minimum pod scale. This high number showcases the
importance of cold start mitigation to users and a clear need
to reduce cold start times or mitigate them entirely.

Implication 3: Almost 60% of workloads had a minimum
pod scale of at least one (default is 0), signifying that service
times are still important to users. Cold start mitigation and
reduction should be improved to reduce the need for idle pods.

Container Concurrency Limit. The serverless model
has evolved to have containers that can be configured to
run hundreds of executions concurrently. We observe that
93.3% of workloads use Knative’s default container concur-
rency of 100. With far more workloads having their default

CPU/memory settings changed than their concurrency con-
figurations, it appears adjusting resource allocations is a
more intuitive for users. 3.2% of workloads configured con-
currency higher than 100 (up to 1000). Containers set with
higher concurrency require less scaling and avoid long cold
starts for custom images, but their static resource allocation
can lead to over-provisioning during low traffic.

Implication 4: Serverless systems have evolved to support
containers running hundreds of executions concurrently. This
amplifies resource wastage when containers run at lower
concurrency than configured.

4 Enhanced Lifetime Management

Using our characterization insights, we build on recent re-
search in adaptive lifetime management of serverless appli-
cations. We revisit two seemingly obvious assumptions that
prior studies have overlooked:

(1) There is no consensus on performance metrics or
efficiency metrics to use (Table 2). Existing systems cannot
dynamically adapt to different metrics, as they use decoupled
metrics for optimizing system components (e.g., Mean Ab-
solute Error) and evaluating the performance and efficiency
of their overall system-making it difficult to support new
metrics or different tiers of service [31].

(2) Existing solutions use one forecasting approach [20,
40, 45, 60]. We find that individual forecasting models and
heuristics do not adapt to all applications, given the variable
nature of serverless workloads [26, 28, 44].

We translate these two insights into two implementation-
level principles for building extensible lifetime management
systems that adapt to evolving serverless metrics and work-
loads [26, 34], incorporate advances in predictive models [35],
and maintain low overheads. First, we introduce and use a
Representative Unified Metric (RUM) to decouple specific
metrics from the operation and implementation of serverless
platforms (§4.1). This allows providers to update or extend
metrics of interest or simultaneously support multiple sets
of metrics for different service tiers without impacting plat-
form design and implementation. RUMs are meant to be
used as the objective function for optimization and evalu-
ation: aligning the optimization of the overall system and
its components. RUMs enable systems to adapt to changing
metrics. Second, we propose automatically selecting fore-
casters based on different types of applications and traffic
patterns, and optimizing forecasters using RUM rather than
common error metrics (§4.2).

4.1 Towards Flexible Metrics

Our characterization (§3) reveals diversity in workload be-
havior that motivates a more flexible approach to lifetime
management. For instance, while most workloads experience
low platform delays, about 20% exhibit long-tail latencies

—- Default: 1

Fraction of Workloads

—- Default: 4

—=—- Default: 0 —=—- Default: 100

1071 10° 10° 10t
Requested CPU (Cores)

Requested Memory (GB)

5 10 15 0 250 500 750 1000
Minimum Pod Scale Container Concurrency Limit

Figure 7. The distribution of workload configurations illustrates how users alter the default configurations.

~
N > S
g < &
> ¢ B §
< & g &
& § & F
g
Criteria Metric & S & Yg/
Cold Start % Per App)
Overall Cold Start % [J [
Performance - -
Service Time [J [J
Number of Cold Starts)
Wasted Memory Time [
Efficiency Allocated Memory Time [
Total Keep-alive Cost ($) ([]

Table 2. There is no consensus on the preferred performance
and efficiency metrics for serverless lifetime management.
Metrics are aggregated over all apps unless stated otherwise.

exceeding one second (Implication 2). This highlights that
a single, fixed optimization metric is insufficient. A system
that optimizes only for cold start percentage might ignore a
workload with few but extremely long cold starts, leading to
poor user experience. Furthermore, our findings show that
users often default to costly configurations like non-zero
minimum pods (Implication 3) and high concurrency limits
(Implication 4) to manually prioritize latency over cost.

The evidence from our characterization drives our first
design principle: decoupling platform optimization from
specific, hard-coded metrics. To achieve this, we employ
RUMs to encode efficiency and performance trade-offs in a
tunable objective. This decouples system logic from metric
definitions and supports multi-tier services and evolving
goals. Unlike prior systems that fix metrics in code or use
them solely for evaluation (Table 2), we use RUM to drive
both component optimization and platform-wide decisions.

Providers must be able to evolve optimization goals with-
out redesign. With Serverless 2.0, user-defined containers
amplify variability, making design with static metrics unten-
able. 9% of apps see over 10s delay, while most remain below
1s (§3.3)—emphasizing the need for per-app flexibility.

Implication 5: A serverless lifetime management system
should allow for (1) updating the set of optimization metrics
and (2) simultaneously optimizing for various metrics on the
same platform.

RainbowCake [56] takes a first step by combining memory
and latency in one policy; RUM generalizes this idea. We

introduce two example RUM formulations. The first reflects
trade-offs seen in prior work and uses public cloud data:

w1 X (cold start seconds) + wy X (wasted GB-seconds) (1)

This metric captures the trade-off between latency and mem-
ory. The weight ratio wy/w; reflects how much memory
providers are willing to waste to avoid one cold start second.
We estimate w; and w, using publicly available data from
the three largest cloud providers. We first take a weighted av-
erage of keep-alive times across AWS, Azure, and Google [37,
48] based on market share [1] to infer a provider-agnostic
keep-alive time of 537 seconds. Given a median memory
consumption of 150 MB for Azure workloads [45], we con-
clude that up to 80.5 GB-seconds are wasted per cold start.
Next, using a similar analysis, we found that the weighted
average of cold start times across providers and languages
is 0.808 seconds. We consider cold start times for Python,
JavaScript, Go, and Java across the same three providers:
first weighing cold start times across languages based on
popularity [13, 48] for each provider, then weighing cold
start times across providers based on market share [1].
With 80.5 GB-seconds of wasted memory per cold start,
and an average cold start duration of 0.808 seconds, we de-
duce that providers waste 222 ~ 99.7 GB-s per cold start

0.808
second. Consequently, we set w; = 1 and w; = ﬁ. Unless
stated otherwise, we use the default RUM with these weights
in later sections, setting all cold start durations to 0.808 sec-
onds. Fixed cold start durations ensure fairer comparisons
to prior work as some did not consider variable cold start
durations, and minimizes the scope of our assumptions as

cold start durations are not available in public cloud datasets.

cold start seconds
w1 X | —————— + w2 X (wasted GB-seconds) (2)
execution time

This alternative metric emphasizes cold start mitigation
for short-lived executions. We do not claim universality for ei-
ther. Instead, we show that RUM enables optimization across
diverse workloads. FeMux can support multiple such formu-
lations simultaneously (§5.1.2).

4.2 Towards Flexible Traffic Forecasting

Our analysis (§3.2) showed the intermittent nature of server-
less traffic, with over 96% of workloads exhibiting high vari-
ability in their inter-arrival times (CV > 1). This confirms
that a ‘one-size-fits-all’ forecasting approach, common in
prior work, is unlikely to be optimal. This insight drives
our second design principle: adapting forecasters to
workload characteristics.

Active lifetime management policies rely on workload
forecasting to predict incoming traffic: informing keep-alive
and pre-warming decisions. This section is focused on the im-
portance of forecasting flexibility. For the following studies,
we used simulate forecasts for 13k randomly chosen, repre-
sentative® applications from the Azure 2019 trace [18, 45].

4.2.1 Not All Accuracy Metrics Are the Same. Accu-
racy of forecasters can be measured by standard statistical
metrics. Prior work [40, 60] uses metrics including Mean
Absolute Error (MAE) [40] and Symmetric Mean Absolute
Percentage Error (SMAPE) [60] to evaluate and optimize
workload forecasters. However, generic accuracy metrics
do not align with system’s performance metrics, like fewer
cold starts or lower resource wastage. We show the merit of
directly using metrics of interest (RUM) for assessing and
tuning forecasters by comparing Autoregressive (AR) and
FFT forecasters model used in prior work [26, 40]. Each fore-
caster predicts the average concurrency (used in Knative’s
Autoscalar) for each application over time. We assess the
predictive power per application, based on MAE and RUM.
Even with identical forecasters, different metrics yield dif-
ferent conclusions. AR is superior for 65.2% of applications
when assessed using MAE. However, FFT outperforms AR
for 68.9% of apps for the metric that we ultimately care about,
the RUM. Common error metrics assign equal weight to all
errors, regardless of their impact on system performance. An
insight guiding FeMux’s design is to adaptively use forecast-
ers based on the metric of interest, rather than relying on
raw statistical error metrics.

Implication 6: Forecasters used in an adaptive lifetime man-
agement system need to be objective-aware.

4.2.2 Not All Applications Are the Same. Prior work
uses a single forecaster for all applications [6, 40, 45, 60]. Con-
sidering the diverse serverless workload patterns, using a
single forecaster for all applications is debatable. To illustrate
this with a simple example, we compare the performance of
those two forecasters (discussed in §4.2.1) using RUMs. In
doing so, we use the same set of Azure traces and classify
the applications based on the invocation count in 12 days
of data and report RUM per category. FFT performs better
for applications with fewer than 1 million invocations, while
AR performs better for applications with more (Fig. 8-Left).

3The invocation frequency distribution follows that of the full dataset.

le7 1e7 All Apps

1.5 A
Forecaster
== AR
1.0 -
s e FFT
=]
o
0.5 4
0.0-

<1M 1M-100M
App Class (Based on Invocation Count)

>100M

Figure 8. A simple app classification by invocation volume
shows forecasting quality varies across app classes with
different forecasters (Left). Using the right forecaster per
class reduces RUM (Right). FeMux automates classification
and feature/forecaster selection for custom RUMs.

>
e 2 7
g i
N JJMWL ’
: L A A
o 01— , : = : : :
O
_ 51 | .
5 ! —— Markov Chain
o 0- — AE
_ 51 ! . .
S i —— 5-min Keep-alive
U 01 —w/"MWMin— Evﬂ ‘I‘\ Ir‘

0 50 100 150 200 250 300

Time (m)

Figure 9. Forecasters’ suitability can change over time.

Fig. 8-Right compares the aggregate RUM for all applica-
tions when only one forecaster (AR or FFT) is used, versus
using the optimal forecaster for each class. Here, the cate-
gorization criteria (invocation count), thresholds (1M and
100M), and forecaster set (AR and FFT) were selected for
simplicity, aiming to convey key insights. We will show how
a broader set of forecasters and more advanced classification
can achieve superior performance (§4.3). FeMux is the first
lifetime management system exploring this angle.

4.2.3 Not All Times Are the Same. Applications can
experience different invocation phases [45]. Suitability of
different forecasters can change over time. Fig. 9 illustrates
this by comparing a fixed 5-minute keep-alive policy with
a Markov Chain (MC) forecaster using a real trace (hash
ending . .a427be). The 5-minute keep-alive policy performs
better initially with higher traffic variability, while MC learns
to predict periodic traffic perfectly in the second hour.

Implication 7: The framework should be able to choose the
most suitable forecaster for each epoch because application
behavior evolves over time. This should be done with low
overhead.

1 1
| §5.1 L §5.2 |
I .]
2, Invocation Traces Feature Extraction !
=y x .)) 7
@! Forecaster Unit §5.3 o Foat Foat !
[— \ Forecaster N | - -~ - > . ' ’ ea1 ure eazure 00’ eaNure |
8 i orecaster 2 | - - - »| Objective i 7 !
= ---»| Function ¥ !
o) ! Forecaster 1 Calculator §5.4 :
' Classification '
1 |—> 1
L 1
oo nTTTTonm o +"""'""-
. Forecasting '
H Forecast Result §5.6 ‘ i
c 1
S! Forecaster .
5 ! ,
o, 0 -1» Multiplexer |- i
e Pre-warming Keep-alive |1
o, I 1
£ N * !
< i
O,)
i | Real Traffic Fi’;ttfrcets < ; :_> i
b e e e e e e e e — 1
Figure 10. FeMux system overview.
4.3 FeMux

To address the design implications listed in prior sections, we
present FeMux (Fig. 10), a serverless lifetime management
framework. FeMux multiplexes between forecasters based
on the current pattern of each application. This is done by pe-
riodically extracting latent features from application traces,
which are used as input to a classification model that selects
which lightweight forecaster is used to predict each appli-
cation’s traffic pattern. The classification model is trained
offline on fleet-level traces. Providers already track traffic,
execution time, and memory data [26, 45] needed for FeMux.
By switching between forecasters as opposed to using an
ensemble, FeMux only executes one lightweight forecaster
at a time with an average inference time less than 7 ms (§5.2),
while maintaining high accuracy.

4.3.1 Data Representation. Prior work commonly rep-
resents an application’s past and forecasted activity using
idle times [45, 47, 55] or the number of invocations per
minute [40, 60]. Knative [30] has an average concurrency rep-
resentation, closer to the latter. Since our service is Knative-
based and we prototype FeMux on Knative, we use the same
representation. It can be changed for other settings.

4.3.2 Feature Extraction. Invocation traces contain la-
tent features useful for selecting the best forecaster. Sta-
tistical tests are typically used in time series forecasting to
extract such features, including linearity, stationarity, and pe-
riodicity. We evaluate the use of standard statistical features
that can be derived from publicly available traces. Never-
theless, FeMux’s design allows for seamless integration of
supplementary features.

Stationarity and linearity are key properties in time
series forecasting, as many models assume one or both. Lin-
earity implies a linear relationship between values, while

stationarity means constant mean and variance. Identifying
these traits aids in model selection. For instance, an AR [51]
model assumes that a time series is stationary and linear;
for piece-wise linear and non-stationary time series, Self-
Excitation Threshold AutoRegressive (SETAR) [11] performs
well [50]. We use the Broock-Dechert-Scheinkman test [7]
and Augmented Dickey-Fuller test [15] to determine linearity
and stationarity, respectively.

Periodicity is assessed by analyzing harmonics. A finite
number of prominent harmonics indicates a periodic or
quasiperiodic nature, depending on time series length. FFT
extracts harmonics, which help determine periodicity and
make predictions [26, 40]. Joosen et al. [26] have found that
FFT outperforms all but one of the eight ML and statistical
models they use for forecasting.

Density is the number of invocations within a time win-
dow. It serves not only to categorize applications by popu-
larity (§4.2.2), but also as a proxy for forecasting complex-
ity. When workloads do not contain discernible patterns,
general trends are followed by Exponential Smoothing [21]
forecaster, which forecasts based on a moving average, and
Double Exponential Smoothing (Holt [10]), which uses a
second moving average to account for trends in the data.

For feature calculation and analysis, we divide invocation
data into blocks. We use static windows as block boundaries,
avoiding the high cost of continuous analysis per applica-
tion. While static block sizes may cause patterns to span
boundaries, this trade-off simplifies implementation. Due to
the Broock-Dechert-Scheinkman linearity test requiring a
minimum block size of 400 data points, we set a block size
of 504 minutes to balance performance and pattern detec-
tion (sensitivity study in Supplementary Material). Feature
extraction takes <5 ms and is done once per block.

4.3.3 Forecaster Unit. Instead of using a single forecaster,
FeMux’s Forecaster Unit comprises a set of low-latency fore-
casters, with one selected online based on recent feature
values and the trained model. Each forecaster must have low
prediction overhead to minimize costs for the provider.

Forecasters. Our forecasters use two hours of past traf-
fic and predict the incoming minute worth of traffic, both
of which can be adjusted by providers. For stationary and
linear patterns, we include AR, and include SETAR for non-
stationary patterns that are piece-wise linear. For periodic
traces we include FFT, and for dense traces include Expo-
nential Smoothing and Holt models. We also implemented a
Markov Chain forecaster [24, 29, 41] for applications with
repetitive invocation patterns. The intention behind select-
ing these diverse forecasters is to showcase the framework’s
capability in adaptively choosing forecasters based on the
features of each block. Providers can use their preferred set
of forecasters and metrics of interest (using RUM).

During offline training, we simulate forecasts for 13k ap-
plications (§5.1) to tune forecast parameters based on RUM.

Using empirical results from a range of parameter values
between 1 and 20, we pick 10 lags for AR and SETAR, with
up to two thresholds for SETAR, and have FeMux use the top
10 harmonics from the FFT. Further, Exponential Smoothing
and Holt have dynamic parameter selection, and our Markov
Chain uses four states. Dynamically adapting forecaster hy-
perparameters to different RUMs is future work.

4.3.4 Classification. Any classification method can map
block features to forecasters during offline training. Providers
to re-train classification models with new data periodically
(e.g., per month or quarter). Since we use Azure 19 traces for
many of our experiments, we train once for our experiments
given the two-week span of the trace. K-means clustering,
run on a 16-core Intel Xeon E5 with 64 GB of memory, pro-
cesses blocks from 13k applications in under 10 minutes,
with negligible training overhead due to high amortization.
To put it in perspective, each AWS Lambda function receives
a monthly free tier of 400,000 GB-s of compute time [5],
where functions receive CPU and memory with a fixed ra-
tio of 11.Z7J§9PG% [4]. So, the above monthly training comes to
less than 0.000738%* of the free-tier memory and less than
0.000327% of the free-tier CPU allocation of each applica-
tion. Even if a user deploys 1,000 applications, this overhead
is less than 1% of their per-app free tier share.

Feature values are first standardized using a transformer
(StandardScaler), removing the mean and scaling to unit
variance. Then, FeMux uses K-means to group blocks with
similar features. It then assigns each cluster to the forecaster
that has the lowest RUM sum across all blocks within the
cluster. The forecaster with the lowest RUM value across
all blocks is set as the default forecaster, which FeMux uses
when there is not enough invocation data to form a block.
K-means clustering reduces RUM by over 15% compared
to supervised models such as decision trees and random
forests. Supervised models optimize for labelling the best
forecaster for each block, but mislabelled blocks might assign
forecasters that perform poorly. FeMux mitigates this by
clustering similar blocks and assigning the best forecaster
on average, improving tolerance to misclassification.

4.3.5 Resource Allocation. When an application has suf-
ficient invocation history to form a new block, FeMux asyn-
chronously extracts the features and uses the pre-trained
classification model (§4.3.4) to select the forecaster for the
next block. Traffic forecasts are used to control lifetime man-
agement parameters (§2.2). At the start of each interval, Fe-
Mux scales enough compute units to keep the predicted
number alive. It also has two overriding rules, similar to
prior work [20, 40, 45]: compute units are not preempted
mid-execution, and any compute units that are provisioned
due to a cold start are kept alive until the end of the interval.

4[(10m x 605 x 64GB) + 13k] + 400,000GB.s = 0.000738%
S[(10m x 60 x 16¢) + 13k] + (400, 000GB.s X 1=i&=2) = 0.000327%

4.3.6 Training Overhead. We observe that FeMux’s train-
ing and inference overhead is suitable for large-scale produc-
tion environments. For offline training, feature extraction
from the Azure 2019 dataset (12.5B invocations) takes under
4 hours, while classifier training completes in under 10 min-
utes. For our dataset (1.9B invocations), feature extraction
and classification take less than 30 and 5 minutes, respec-
tively. Providers can retrain monthly or daily depending on
QoS requirements, and retraining can be done incrementally
by adding or replacing blocks.

5 Evaluation

Similar to prior work [20, 40, 45], we use simulations (§5.1) as
our primary evaluation methodology. This allows to assess
the effectiveness of FeMux at production scales for extended
times. Such scale and duration are also critical to test the
combination of various workloads and to press the design in
infrequent scenarios.

FeMux itself is implemented in Python and Go, and fully
automated once deployed. The classifier model is loaded in
the forecasting pod. FeMux scales both horizontally (more
pods), and vertically (larger pods) as required. We also proto-
type FeMux in Knative and evaluate the deployment (§5.2).

5.1 Simulation Results

To ensure fair comparison to prior work [20, 40, 45, 60],
which all used the Azure *19 dataset [18], we use the same.
It also allows us to demonstrate that FeMux’s benefits are
not dependent on our own dataset from IBM. The Azure ’19
dataset includes daily average execution time and per-minute
invocation counts for 14 days, and daily app-level memory
consumption for 12 days—we use 12 days for evaluation.
Applications consist of one or more functions, with app-level
resource provisioning; each application instance executes on
a separate compute unit, and at most one instance of each
function runs on each compute unit [45].

We discard traces with NaNs for memory or execution
duration, zero duration, or no invocations in the first 12
days, using the remaining 19k with a 70-30 train-test split.
The training set is divided in half to form a train and valida-
tion set. Subtraces are generated by randomly sampling data
across applications with three levels of traffic: over 100M in-
vocations, between 1M and 100M invocations, and under 1M.
We use the full 12-day trace, and uniformly distribute invo-
cations within each minute similar to prior work [20, 45, 58].
To maintain realistic scaling limitations in our simulation, we
use the limits set by AWS Lambda, which scales up no more
than 500 instances per minute once there are over 3,000 [42].

Comparing designs built for different metrics is a common
pitfall in prior work. Direct comparison of adaptive lifetime
management systems can be skewed, as each system has
its own assumptions on the metrics desired by users and

le7

100

2

FC M

FC.
M FC

©
o
!

=
U
)
o
o
|

sy
o
!

I
s}
)

FM FeMux-CS FC FaasCache 300GB

FeMux FC FaasCache 270GB

0.0 FM FeMux-Mem FC FaasCache 240GB
. L — T T T

N
o
!

Wasted GB-seconds
-
o
Normalized Keep-alive Cost (%

o

IceBreaker's FFT AQ Aquatope's LSTM

AQ

N N
o (S
o o
1

150

1B
M

[y

o

o
1

M

w
o
1

T T - T T
00 05 10 15 20 25 3.0 0 50 100
Cold Start Count le5

150 200 250 300
Normalized Service Time (%)

o

0.1 0.2 03 04 05 0.6
Cold Starts (%)

Normalized Memory Allocation (%)

o
o

Figure 11. FeMux outperforms prior work based on their original metrics. For IceBreaker [40], service times include cold start
durations and execution times, and keep-alive cost is based on total allocated memory (Middle). Aquatope uses aggregate cold
start percentage and memory allocation normalized to a 10-minute keep-alive (Right).

providers (Table 2). For instance, striving to reduce over-
all cold start percentages [60] leads to optimizing for fre-
quently invoked applications, whereas striving to improve
the tail behavior of cold start percentages for different ap-
plications [45] requires efficient handling of rarely invoked
applications. Neither of these strategies is obviously superior.
The provider may choose either goal: reducing overall costs
inherently favors popular applications, attracting new users
favors considering all applications equally, or a combination.

To ensure fair representation of prior work, we 1) tune all
baselines based on the same training dataset (§??); 2) simulate
their performance using the same data representation as their
experiments (e.g., invocations per minute for IceBreaker),
and 3) adapt FeMux to use similar metrics as each prior work
to ensure fair, apples-to-apples comparisons.

5.1.1 Comparison to Prior Work. Comparing adaptive
lifetime management systems is notoriously difficult, as each
is optimized for a different set of performance and efficiency
goals (Table 2). A direct comparison using a single, fixed
metric would unfairly favor the system originally designed
for it. To address this, for each state-of-the-art system, we
use the RUM to optimize for the exact same metrics used
in the original work, and in doing so we are able to get
closer to an ‘apples-to-apples’ comparison. Our experiments
demonstrate that FeMux shows greater adaptability.

We evaluate the benefits of having a lifetime management
policy that adapts to traffic patterns by comparing FeMux and
FaasCache, as FaasCache uses a fixed cache size. Further, we
observe how forecaster switching leads to better predictions
than using FFT by comparing with IceBreaker, and LSTM-
based prediction networks by comparing with Aquatope.
RUM’s flexibility allows us to compare FeMux with each
system using its respective metrics. FaasCache, Icebreaker,
and Aquatope cannot be fairly compared with each other
due to their different fixed objectives.

RUM enables optimizing the defined Pareto optimality
of underlying metrics, and allows system optimization for
a mutable metric. This means FeMux can be optimized for,

and evaluated with any set of RUM definitions. For the sake
of evaluation, we use four specific RUMs. Three are vari-
ants of the first RUM example (Eq. (1)) with: default RUM
weights (Eq. (1)), 4x higher cold start weight (FeMux-CS),
and 4x higher wasted memory weight (FeMux-Mem). The
fourth one is FeMux with an execution-time aware RUM
(FeMux-Exec) (Eq. (2)). The variants of FeMux (CS, Mem,
Exec) have the same underlying system, but use different
RUM definitions and weights for optimization.

FaasCache. One primary difference between FeMux and
FaasCache is adaptability: FaasCache’s fixed cache size is
either (i) wasting resources from being too large, or (ii) too
small and incurs many cold starts from not keeping enough
compute units alive. Given the burstiness [28] and variabil-
ity [26, 45] of serverless workloads, lifetime management
systems must dynamically adapt to traffic patterns.

Fuerst and Sharma use both the number of cold starts
(n) and the fraction of cold starts (§;) to evaluate the cold
start mitigation of FaasCache [20]. In any tested scenario,
the number of invocations (N) is fixed, and essentially one
metric is the scaled version of the other. We use the former
for comparison. For the FaasCache results, we use their open
source artifact [19]. While using the Azure traces, FaasCache
performs function-level allocation, unlike Azure Functions’
application-level allocation model [45]. This constraint in
FaasCache’s simulator limited us to testing to just single-
function applications: 2,523 apps from our test dataset with
>18M invocations.

All variants of FeMux are more Pareto optimal than Faas-
Cache with different cache sizes (Fig. 11-Left). FeMux-CS
reduces cold starts by over 64% compared to FaasCache with
a 300 GB cache size, while wasting 3% more memory. Con-
versely, FeMux-Mem reduces the number of cold starts by
over 54% compared to FaasCache with a cache size of 240 GB,
while wasting 1% less memory. Further, FeMux reduces RUM
by 30% relative to FaasCache with a cache size of 270 GB.
Since cold start durations are fixed, minimizing cold start du-
rations in the default RUM (Eq. (1)) translates to minimizing

cold start count, and wasted GB-seconds is already used by
both FaasCache and in the default RUM.

IceBreaker’s FFT. Roy et al. evaluate IceBreaker’s adap-
tive lifetime policy using service times and keep-alive costs
normalized to a 10-minute keep-alive policy [40]. Service
times are the sum of wait times, cold start durations, and
execution times; keep-alive costs are measured in dollars
based on the wasted GB-second. We assume homogenous
resources to evaluate only the adaptive lifetime policy of
IceBreaker. FeMux-Mem and IceBreaker incur 40% and 48%
of the keep-alive cost when compared to a 10-minute-KA pol-
icy, but IceBreaker increases service times by >266% while
FeMux-Mem creates a 170% increase (Fig. 11-Middle). Fe-
Mux reduces the RUM by 42%, when Icebreaker’s metrics
are translated into RUM.

IceBreaker’s reliance on a single FFT forecaster struggles
with both low-traffic applications (where it often forecasts
zero) and high-traffic applications with highly variable pat-
terns. This highlights the fundamental limitation of a single-
forecaster approach, which FeMux overcomes by dynami-
cally multiplexing between models (e.g., Markov Chains for
periodic traffic, Exponential Smoothing for trends) that are
better suited for the workload’s current behavior.

Aquatope’s LSTM. We use Aquatope’s open-source arti-
fact with default parameters [59], which trains the LSTM and
prediction models independently for each application, uses
a 48-minute input window, and the first 7 days of each test
trace as training data with the remaining 5 days for testing,.
Similar to prior work [20, 40, 45], we report training and
inference statistics based on CPU computation. Training for
Aquatope takes 4x longer than FeMux on the same hard-
ware, and is application-specific; inference times range from
109-308 ms — almost 28x slower than FeMux’s.

Aquatope uses aggregate cold start percentage and mem-
ory allocation normalized to a 10-minute keep-alive for evalu-
ation. Fig. 11-Right shows that Aquatope allocates 114% more
memory than a 10-minute keep-alive and incurs 3.1M cold
starts (0.47%), while all variants of FeMux have fewer cold
starts and less memory allocation. Further, for RUM, which
considers total cold start duration and wasted memory, de-
fault FeMux provides a 78% reduction compared to Aquatope.
Note that aggregate metrics such as cold start percentage are
skewed to be small as high-traffic applications have many
live containers, which reduces their fraction of cold starts but
incurs additional memory wastage. Despite training a sepa-
rate LSTM model for each application, Aquatope’s complex
models adapt too slowly to the bursty, high-frequency traffic
patterns common in serverless workloads. FeMux’s use of
an agile classification model to switch between lightweight
forecasters provides better accuracy with significantly lower
training (4x faster) and inference (28x faster) overhead.

5.1.2 Supporting Different RUMs Simultaneously. With
FeMux providers can offer differentiated tiers of service

1le8

44 P Premium Apps R
R Regular Apps
3] @ FeMux-CS
FeMux

Ly
=
o
)
)
o

Wasted GB-seconds
= N

paIaIL-T

0 T T T T T T T
0 50 100 150 200 250 300 350 400

Average Cold Start Seconds Per App

Figure 12. FeMux simplifies building multi-tiered services.
This flexibility comes from enforcing flexible application-
level RUMs.

through simultaneous use of multiple RUMs in the same
platform. To demonstrate this, we consider a case where 10%
of applications are premium (P), representing users willing
to pay more for better performance, and the remaining 90%
are regular (R). Fig. 12 shows that selective use of FeMux-CS
(Blue) for premium applications (Pp;,.) reduces cold start sec-
onds of premium applications by 45%. Compared to a single-
objective deployment, which treats all apps equally to reduce
cold starts for just 10% of them, the tiered approach cuts
memory wastage by 35.4%: (WastedMem(Ppjye + Rorange) =
64.6% * WastedMem (Pgjye + Rpiye)).

5.1.3 Different RUM Definitions. Apart from evaluating
with different weights for the default RUM formulation, we
also optimize FeMux with the execution time RUM (Eq. (2)).
One key difference between the RUMs is that cold start miti-
gation for the default RUM is application agnostic, but for
the execution time RUM the impact of cold starts is measured
relative to the execution time of each application. We train
an execution time aware FeMux (FeMux-exec) by using the
execution time RUM as the optimization metric and adding
a feature capturing the execution duration of the application
that each block is extracted from.

By weighing all cold starts equally, FeMux (trained on
default RUM) incurs 33% less cold start seconds than FeMux-
Exec and reduces the default RUM by 7%. Conversely, by
incurring cold starts for applications that have low cold start
impact due to longer execution times, FeMux-Exec reduces
wasted memory by 25% relative to FeMux and achieves a
19% reduction in execution time RUM.

5.1.4 Sensitivity Studies. We also 1) compare the per-
formance of individual forecasters with their multiplexed
combination, 2) compare different combintations of features,
and 3) explore the effect of block size (Appendix C). These
results are included in the Supplementary Material file submit-
ted. While they may be of interest to some readers, they are
peripheral to our main technical contributions.

Application Pods

1 Scale
Deployment
Queue — T Pod Scaling Decision
P Application | |«—
roxy
T Scaling

3 Horizontal Scaling

Policy Awaré Avg Conc

] :
Ingress Controller H Activator ‘ FeMux. API | AppN_ | |i :
Metrics FeMux Pod '

Traffic

Autoscaler

Figure 13. Integration of FeMux in Knative Serving.

5.2 Knative Prototype

To validate FeMux in a real-world system, we integrate it
into the Knative Serving component as a scalable microser-
vice that intercepts the concurrency metrics flowing to Kna-
tive’s default Autoscaler (Fig. 13). FeMux’s REST API pro-
vides a predictive scaling target back to the Autoscaler, ef-
fectively overriding Knative’s default reactive logic with
FeMux’s proactive, forecast-based decisions—requiring min-
imal changes to the core Knative components.

In the original configuration, Knative’s Serving compo-
nent (Fig. 13) routes client traffic via an ingress. The Acti-
vator buffers invocations for under-scaled applications, and
Autoscaler manages pod scaling using concurrency data. Ap-
plication pods pair a user container (code execution) with
a queue-proxy that provides metrics (every 2s) to the Au-
toscaler and handles response egress to the ingress. Its default
lifetime policy is a 1-minute KA.

All FeMux forecasters are implemented in Python and
reside within a pod, while passive policies (e.g., 10-min KA)
are directly implemented within the Autoscaler. Each ap-
plication has a dedicated FeMux instance (a thread in the
FeMux pod), as lifetime management happens at the applica-
tion level. FeMux pods can scale vertically by adding more
concurrent threads, or horizontally by scaling up additional
FeMux pods. We deploy a horizontal pod scaler to manage
scaling FeMux pods, and use etcd to persist threads’ states.

Each second, the metrics collector forwards the average in-
vocation concurrency to the FeMux APIL To match the Azure
data and simulations, the FeMux API batches per-second
average concurrency to obtain per-minute estimates, which
means (i) the forecasts from the FeMux pods are based on
per-minute data, and (ii) the FeMux APTI’s scaling decisions
are maintained for one minute.

The FeMux API uses application-specific REST endpoints
to route minute-scale average concurrency to the respective
forecasting thread(s) which reside in FeMux pods. The Fe-
Mux pod then outputs the forecasted concurrency which
the FeMux API uses to make a scaling decision and com-
municates to the Autoscaler. When sufficient minutes are
captured to complete a new block, application threads asyn-
chronously cluster the newly completed block and start using
the assigned forecaster for future forecasts.

Setup. Our evaluation setup consists of a Knative-serving
deployment on top of a Kubernetes cluster with 1 controller
node and 9 worker nodes. The controller node has 8 cores and
30 GB of memory and worker nodes have 4 cores and 15 GB
of memory each, totaling 44 cores and 165 GB of memory.
For comparison, clusters from prior work had 38-48 cores
and 76-256 GB of memory [20, 40, 45].

Workload. Our workload for the 10-node Knative deploy-
ment is composed of 100 randomly sampled applications
sourced from the testing portion of our simulation workload.
With over 232,000 invocations in a 24-hour period and a peak
CPU utilization below 70%, the number of applications, ex-
periment duration, and traffic characteristics follow practices
from prior work [45, 60] and production clusters [46, 57]. To
maintain representativity [52], we ensure that the distribu-
tion of invocations across applications from our Knative
workload follows full Azure 2019 dataset’s (Fig. 14-Left). Ide-
ally, our work and prior work could access production scale
clusters to support large workloads, but this limitation is
why simulated studies are the standard for large scale exper-
iments. We replay traces using FaaSProfiler [43, 44], where
each invocation executes a Go function that allocates mem-
ory and busy waits as defined by the trace.

FeMux Gains. FeMux reduces RUM by 36% compared to
Knative’s default policy (Fig. 14-MiddleRight). Further, Fe-
Mux reduces application cold start percentages by >50% for
over 25% of applications (Fig. 14-MiddleLeft), and maintains
(within 2%) or improves the cold start percentage while main-
taining modest resource wastage, as indicated by the aggre-
gate RUM reduction. For this evaluation, we use the same
FeMux trained on the default RUM weights as in simulation,
and observe that the RUM values from our simulation are
within 13% of deployment.

Knative uses container concurrency, unlike invocation

count used by prior work [20, 40, 45, 60] on OpenWhisk.
Knative’s serving architecture makes scaling decisions every
two seconds, and requests are queued in pods and central Au-
toscaler. Conversely, OpenWhisk sends requests to invokers,
which allocate containers to serve requests (no concurrency
by default). As prior systems are built upon very different
architecture and data representations, we only compare to
them in simulation.
Scalability Study. A single FeMux pod with 1 vCPU main-
tains a mean forecasting latency of 7 ms and a p99 latency
of 25 ms, when serving 20 forecasting requests per second.
Since application forecasts are performed once per minute,
this maps to supporting 1,200 applications per forecasting
pod. Our experiment shows that FeMux pods scale out grace-
fully to accomodate forecasting demands for more appli-
cations (Fig. 14-Right). Further, clustering occurs once per
block (e.g., 504 minutes) and takes under 10ms.

1.01 1.01
1% (%]
: Yy
= 0.8 = 0.8
© ©
L O
3 0.6 / 20.6
o Q
2 y 2
© 0.4 / © 0.4
S S
® 0.2 / —— Azure Trace & 0.24] —— Knative
= f Eval Subtrace | “* | FeMux
0.01' 0.04"
102 10° 108 0 50 100

Number of Invocations Cold Start (%)

Number of Apps (x1000)
1.2 24 36 48 6.0

30
10000 1 ?
8000 A 3 20
2 501
[0}
= 60001 §157 —+ mean
=4 o p99
4000 1 = 10
S —_—
2000 A 2 5.
w
0 ok ! ! ! ‘
Knatiy Femyy 20 40 60 80 100

Forecasting Rate (rps)

Figure 14. (Left) Distribution of our evaluation subtrace follows the full Azure workload. (Mid-left) FeMux reduces the fraction
of cold starts incurred across >40% of applications compared to the Knative baseline. (Mid-right) This enhancement considers
memory efficiency, as shown in the reduction of aggregate RUM. (Right) The FeMux pods scale horizontally to accommodate

more serverless applications with low forecasting latency.

6 Related Work

Objectives. Combining and parameterizing objectives has
been proposed in prior work for scheduling or resource scal-
ing policies [23, 39, 53, 56], but we propose RUM as an ab-
stract metric for designing multi-component systems (e.g.,
forecasters, forecaster switching model) that adapt to change-
able metrics and aggregation techniques.

Adaptive lifetime management. Shahrad et al. [45]
consider the idle time between invocations, and deploy a
histogram policy for most traces alongside an Autoregres-
sive Integrated Moving Average (ARIMA) [49] for functions
that cannot be represented by a histogram. INFLess [55] ex-
tends the hybrid histogram policy by introducing separate
histograms for hourly and daily timespans, and uses a greedy
scheduling algorithm for matching functions to resources.
FaasCache [20] instead models the serverless resource man-
agement as a caching problem and uses a greedy heuristic
to decide which functions are kept alive. Rather than using
low-cost heuristics, Barista [6] and Incendio [8] respectively
use pre-trained neural networks and clustered reinforcement
learning for scheduling functions to compute units. In the
context of serverless databases, Diao et al. [14] have recently
evaluated resource scaling using an ensemble of forecasting
and machine learning models, but inference costs are above
our threshold (e.g., >15s), and scaling is targeted at capacity
planning as opposed to individual containers.

Recent work has integrated heterogeneity, dynamic re-
source allocation, and layered-scaling. IceBreaker [40] in-
troduces heterogeneity within compute units to reduce the
overhead of the keep-alive policy, and reduces the number of
cold starts using an FFT forecaster. Instead of splitting the re-
source pool due to heterogeneity, Flame [54] splits a homoge-
nous resource pool into several smaller clusters, and shows
the benefit of a centralized cache controller. AQUATOPE [60]
uses Bayesian optimization for dynamically allocating re-
sources when scheduling functions, and forecasts future

invocations using LSTM encoding and a pre-trained neural
network model. Further, RainbowCake [56] assumes contain-
ers can be scaled between bare-metal, runtime environment,
and user-application layers. By using a keep-alive heuristic
based on a parameterized combination of startup cost and
memory waste, scaling layers of containers shows efficiency
and service time improvements. We compare with FaasCache,
IceBreaker, and Aquatope as they are the best performing
lifetime management policies that have ms-scale latencies
without assuming split resource pools or layered-scaling.

7 Conclusion

We have provided the first large-scale dataset and characteri-
zation of a production serverless platform outside Azure and
Huawei, and the first public trace from an open-source plat-
form that includes concurrency and minimum scale settings.
Using our insights, we introduce a new serverless lifetime
management system, FeMux, aimed at increasing the flexi-
bility and quality of resource management for providers.

Acknowledgments

We thank the anonymous reviewers, and specially our shep-
herd, Yue Cheng, for helping us improve the paper. We also
thank Matei Ripeanu and Hassan Halawa for their valuable
feedback on this work. This work was supported by IBM CAS
Canada Fellowship (project #1139), a British Columbia Grad-
uate Scholarship (BCGS) award, and the Natural Sciences
and Engineering Research Council of Canada (NSERC). Com-
putational resources from the Digital Research Alliance of
Canada (RAS and RAC allocations), IBM Cloud, AWS Cloud
Credit for Research Program, and Oracle for Research Cloud
Starter Award facilitated this project.

References

[1] AAG. 2025. The Latest Cloud Computing Statistics. https://aag-it.
com/the-latest-cloud-computing-statistics/.

https://aag-it.com/the-latest-cloud-computing-statistics/
https://aag-it.com/the-latest-cloud-computing-statistics/

(2]

(10]

[11

—

(12]
(13]

(14]

[15]

(16]

(17]

[21

—

[22]

Alexandru Agache, Marc Brooker, Alexandra Iordache, Anthony
Liguori, Rolf Neugebauer, Phil Piwonka, and Diana-Maria Popa. 2020.
Firecracker: Lightweight Virtualization for Serverless Applications.
In 17th USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI 20). USENIX Association, Santa Clara, CA, 419-434.
https://www.usenix.org/conference/nsdi20/presentation/agache
Amazon. 2025. Configuring reserved concurrency. https://docs.aws.
amazon.com/lambda/latest/dg/configuration-concurrency.html.
AWS. Accessed on 2025-09-16.. Lambda quotas. https://docs.aws.
amazon.com/lambda/latest/dg/gettingstarted-limits.html

AWS. Accessed on 2025-5-14.. AWS Lambda Pricing. https://aws.
amazon.com/lambda/pricing/.

Anirban Bhattacharjee, Ajay Dev Chhokra, Zhuangwei Kang,
Hongyang Sun, Aniruddha Gokhale, and Gabor Karsai. 2019. Barista:
Efficient and scalable serverless serving system for deep learning
prediction services. In 2019 IEEE International Conference on Cloud
Engineering (IC2E). IEEE, 23-33.

William A Broock, José Alexandre Scheinkman, W Davis Dechert, and
Blake LeBaron. 1996. A test for independence based on the correlation
dimension. Econometric reviews 15, 3 (1996), 197-235.

Xinquan Cai, Qianlong Sang, Chuang Hu, Yili Gong, Kun Suo, Xiaobo
Zhou, and Dazhao Cheng. 2024. Incendio: Priority-based Scheduling
for Alleviating Cold Start in Serverless Computing. IEEE Trans. Comput.
(2024), 1-14.

Alex Casalboni. 2019. AWS Lambda Power Tuning. Retrieved 2024-05-
08 from https://github.com/alexcasalboni/aws-lambda-power-tuning
Chris Chatfield and Mohammad Yar. 1988. Holt-Winters forecasting:
some practical issues. Journal of the Royal Statistical Society Series D:
The Statistician 37, 2 (1988), 129-140.

Michael P Clements and Jeremy Smith. 1997. The performance of alter-
native forecasting methods for SETAR models. International Journal
of Forecasting 13, 4 (1997), 463-475.

IBM Cloud. Accessed on 2025-5-14.. IBM Code Engine. https://www.
ibm.com/products/code-engine.

Datadog. Accessed on 2024-10-3.. The State of Serverless 2021. https:
//www.datadoghq.com/state-of-serverless-2021/.

Yanlei Diao, Dominik Horn, Andreas Kipf, Oleksandr Shchur, Ines
Benito, Wenjian Dong, Davide Pagano, Pascal Pfeil, Vikram Nathan,
Balakrishnan Narayanaswamy, and Tim Kraska. 2024. Forecasting
Algorithms for Intelligent Resource Scaling: An Experimental Analysis.
In Proceedings of the 2024 ACM Symposium on Cloud Computing (SoCC
"24). ACM, 126-143.

David A Dickey and Wayne A Fuller. 1979. Distribution of the esti-
mators for autoregressive time series with a unit root. Journal of the
American statistical association 74, 366a (1979), 427-431.

Mathew Duggan. 2023. Serverless Functions Post-Mortem. (2023).
https://matduggan.com/serverless-functions-post-mortem/.

Simon Eismann, Long Bui, Johannes Grohmann, Cristina Abad, Nikolas
Herbst, and Samuel Kounev. 2021. Sizeless: Predicting the Optimal
Size of Serverless Functions. In Proceedings of the 22nd International
Middleware Conference. ACM, 248-259.

Rodrigo Fonseca. Accessed on 2025-5-14.. Azure Functions Invoca-
tion Trace 2019. https://github.com/Azure/AzurePublicDataset/blob/
master/AzureFunctionsDataset2019.md.

Alex Fuerst. Accessed on 2025-5-14.. Faascache. https://github.com/
aFuerst/faascache-sim.

Alexander Fuerst and Prateek Sharma. 2021. FaasCache: keeping
serverless computing alive with greedy-dual caching. In Proceedings
of the 26th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems. 386—400.

Everette S Gardner Jr. 1985. Exponential smoothing: The state of the
art. Journal of Forecasting 4, 1 (1985), 1-28.

Google. Accessed on 2025-5-14.. Google Cloud Run. https://cloud.
google.com/run.

[23]

[24]
[25]

[26]

[27]

[28]

[29]

[30]
[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

Robert Grandl, Ganesh Ananthanarayanan, Srikanth Kandula, Sriram
Rao, and Aditya Akella. 2014. Multi-resource packing for cluster sched-
ulers. SIGCOMM Comput. Commun. Rev. 44, 4 (Aug. 2014), 455-466.
James D Hamilton. 1996. Specification testing in Markov-switching
time-series models. Journal of econometrics 70, 1 (1996), 127-157.
IBM. 2025. Configuring application scaling. https://cloud.ibm.com/
docs/codeengine?topic=codeengine-app-scale.

Artjom Joosen, Ahmed Hassan, Martin Asenov, Rajkarn Singh, Luke
Darlow, Jianfeng Wang, and Adam Barker. 2023. How Does It Function?
Characterizing Long-Term Trends in Production Serverless Workloads.
In Proceedings of the 2023 ACM Symposium on Cloud Computing (Santa
Cruz, CA, USA) (SoCC °23). ACM, 443-458.

Artjom Joosen, Ahmed Hassan, Martin Asenov, Rajkarn Singh, Luke
Darlow, Jianfeng Wang, Qiwen Deng, and Adam Barker. 2025. Server-
less Cold Starts and Where to Find Them. In Proceedings of the Twen-
tieth European Conference on Computer Systems (Rotterdam, Nether-
lands) (EuroSys *25). ACM, 938-953.

Kostis Kaffes, Neeraja J. Yadwadkar, and Christos Kozyrakis. 2022. Her-
mod: Principled and Practical Scheduling for Serverless Functions. In
Proceedings of the 13th Symposium on Cloud Computing (San Francisco,
California) (SoCC °22). ACM, 289-305.

In Kee Kim, Wei Wang, Yanjun Qi, and Marty Humphrey. 2022. Fore-
casting Cloud Application Workloads With CloudInsight for Predictive
Resource Management. IEEE Transactions on Cloud Computing 10, 3
(2022), 1848-1863.

Knative. Accessed on 2025-5-14.. Knative. https://knative.dev/docs/.
Qingyuan Liu, Dong Du, Yubin Xia, Ping Zhang, and Haibo Chen.
2023. The Gap Between Serverless Research and Real-World Systems.
In Proceedings of the 2023 ACM Symposium on Cloud Computing (Santa
Cruz, CA, USA) (SoCC ’23). ACM, 475-485.

Gilad Maayan. Accessed on 2025-05-11.. 5 Ways to Manage Lambda
Cold Starts. https://khalilstemmler.com/blogs/serverless/5-ways-to-
manage-lambda-cold-starts/.

Ashraf Mahgoub, Edgardo Barsallo Yi, Karthick Shankar, Sameh El-
nikety, Somali Chaterji, and Saurabh Bagchi. 2022. ORION and the
Three Rights: Sizing, Bundling, and Prewarming for Serverless DAGs.
In 16th USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI 22). USENIX Association, Carlsbad, CA, 303-320.
Ashraf Mahgoub, Edgardo Barsallo Yi, Karthick Shankar, Eshaan
Minocha, Sameh Elnikety, Saurabh Bagchi, and Somali Chaterji. 2022.
WISEFUSE: Workload Characterization and DAG Transformation for
Serverless Workflows. Proc. ACM Meas. Anal. Comput. Syst. 6, 2, Article
26 (jun 2022), 28 pages.

Ricardo P Masini, Marcelo C Medeiros, and Eduardo F Mendes. 2023.
Machine learning advances for time series forecasting. Journal of
economic surveys 37, 1 (2023), 76-111.

Arshia Moghimi, Joe Hattori, Alexander Li, Mehdi Ben Chikha, and
Mohammad Shahrad. 2023. Parrotfish: Parametric Regression for
Optimizing Serverless Functions. In Proceedings of the 2023 ACM Sym-
posium on Cloud Computing (Santa Cruz, CA, USA) (SoCC °23). ACM,
177-192.

Kim Long Ngo, Joydeep Mukherjee, Zhen Ming Jiang, and Marin Litoiu.
2022. Has Your FaaS Application Been Decommissioned Yet? — A Case
Study on the Idle Timeout in Function as a Service Infrastructure.
arXiv:2203.10227 [cs.DC]

Openwhisk. Accessed on 2025-5-14.. Open Source Serverless Cloud
Platform. https://openwhisk.apache.org/.

Aurick Qiao, Sang Keun Choe, Suhas Jayaram Subramanya, Willie
Neiswanger, Qirong Ho, Hao Zhang, Gregory R. Ganger, and Eric P.
Xing. 2021. Pollux: Co-adaptive Cluster Scheduling for Goodput-
Optimized Deep Learning. In 15th USENLX Symposium on Operating
Systems Design and Implementation (OSDI 21). USENIX Association,
1-18. https://www.usenix.org/conference/osdi21/presentation/qiao

https://www.usenix.org/conference/nsdi20/presentation/agache
https://docs.aws.amazon.com/lambda/latest/dg/configuration-concurrency.html
https://docs.aws.amazon.com/lambda/latest/dg/configuration-concurrency.html
https://docs.aws.amazon.com/lambda/latest/dg/gettingstarted-limits.html
https://docs.aws.amazon.com/lambda/latest/dg/gettingstarted-limits.html
https://aws.amazon.com/lambda/pricing/
https://aws.amazon.com/lambda/pricing/
https://github.com/alexcasalboni/aws-lambda-power-tuning
https://www.ibm.com/products/code-engine
https://www.ibm.com/products/code-engine
https://www.datadoghq.com/state-of-serverless-2021/
https://www.datadoghq.com/state-of-serverless-2021/
https://matduggan.com/serverless-functions-post-mortem/
https://github.com/Azure/AzurePublicDataset/blob/master/AzureFunctionsDataset2019.md
https://github.com/Azure/AzurePublicDataset/blob/master/AzureFunctionsDataset2019.md
https://github.com/aFuerst/faascache-sim
https://github.com/aFuerst/faascache-sim
https://cloud.google.com/run
https://cloud.google.com/run
https://cloud.ibm.com/docs/codeengine?topic=codeengine-app-scale
https://cloud.ibm.com/docs/codeengine?topic=codeengine-app-scale
https://knative.dev/docs/
https://khalilstemmler.com/blogs/serverless/5-ways-to-manage-lambda-cold-starts/
https://khalilstemmler.com/blogs/serverless/5-ways-to-manage-lambda-cold-starts/
https://arxiv.org/abs/2203.10227
https://openwhisk.apache.org/
https://www.usenix.org/conference/osdi21/presentation/qiao

[40] Rohan Basu Roy, Tirthak Patel, and Devesh Tiwari. 2022. IceBreaker:

warming serverless functions better with heterogeneity. In Proceedings

of the 27th ACM International Conference on Architectural Support for

Programming Languages and Operating Systems. 753-767.

Ghazal Sadeghian, Mohamed Elsakhawy, Mohanna Shahrad, Joe Hat-

tori, and Mohammad Shahrad. 2023. UnFaaSener: Latency and Cost

Aware Offloading of Functions from Serverless Platforms. In 2023

USENIX Annual Technical Conference (USENLX ATC 23). USENIX Asso-

ciation, Boston, MA, 879-896.

[42] Amazon Web Services. 2025. Lambda Function Scaling. https://docs.
aws.amazon.com/lambda/latest/dg/lambda-concurrency.html.

[43] Mohammad Shahrad. Accessed on 2025-5-14.. FaaSProfiler. https:
//github.com/PrincetonUniversity/faas-profiler.

[44] Mohammad Shahrad, Jonathan Balkind, and David Wentzlaff. 2019.
Architectural implications of function-as-a-service computing. In Pro-
ceedings of the 52nd annual IEEE/ACM international symposium on
microarchitecture. 1063-1075.

[45] Mohammad Shahrad, Rodrigo Fonseca, ffiigo Goiri, Gohar Chaudhry,

Paul Batum, Jason Cooke, Eduardo Laureano, Colby Tresness, Mark

Russinovich, and Ricardo Bianchini. 2020. Serverless in the wild:

Characterizing and optimizing the serverless workload at a large cloud

provider. In 2020 USENIX Annual Technical Conference (USENIX ATC

20). 205-218.

Yizhou Shan, Yutong Huang, Yilun Chen, and Yiying Zhang. 2018.

LegoOS: A Disseminated, Distributed OS for Hardware Resource Dis-

aggregation. In 13th USENIX Symposium on Operating Systems Design

and Implementation (OSDI 18). USENIX Association, Carlsbad, CA,

69-87.

Jiacheng Shen, Tianyi Yang, Yuxin Su, Yangfan Zhou, and Michael R.

Lyu. 2021. Defuse: A Dependency-Guided Function Scheduler to

Mitigate Cold Starts on Faa$S Platforms. In 2021 IEEE 41st International

Conference on Distributed Computing Systems (ICDCS). 194-204.

Mikhail Shilkov. 2025. Comparison of Cold Starts in Serverless Func-

tions across AWS, Azure, and GCP. https://mikhail.io/serverless/

coldstarts/big3/.

Robert H Shumway, David S Stoffer, Robert H Shumway, and David S

Stoffer. 2017. ARIMA models. Time series analysis and its applications:

with R examples (2017), 75-163.

George C Tiao and Ruey S Tsay. 1994. Some advances in non-linear

and adaptive modelling in time-series. Journal of forecasting 13, 2

(1994), 109-131.

George Udny Yule. 1927. On a method of investigating periodicities in

disturbed series, with special reference to Wolfer’s sunspot numbers.

Philosophical Transactions of the Royal Society of London Series A 226

(1927), 267-298.

Dmitrii Ustiugov, Dohyun Park, Lazar Cvetkovi¢, Mihajlo Djokic,

Hongyu He, Boris Grot, and Ana Klimovic. 2023. Enabling In-Vitro

Serverless Systems Research. In Proceedings of the 4th Workshop on

Resource Disaggregation and Serverless (Koblenz, Germany) (WORDS

"23). ACM, 1-7.

[53] Abhishek Verma, Madhukar Korupolu, and John Wilkes. 2014. Eval-

uating job packing in warehouse-scale computing. In 2014 IEEE

International Conference on Cluster Computing (CLUSTER). 48-56.

doi:10.1109/CLUSTER.2014.6968735

Yanan Yang, Laiping Zhao, Yiming Li, Shihao Wu, Yuechan Hao, Yuchi

Ma, and Keqiu Li. 2024. Flame: A Centralized Cache Controller for

Serverless Computing (ASPLOS °23). ACM, 153-168.

Yanan Yang, Laiping Zhao, Yiming Li, Huanyu Zhang, Jie Li, Mingyang

Zhao, Xingzhen Chen, and Keqiu Li. 2022. INFless: A Native Serverless

System for Low-Latency, High-Throughput Inference (ASPLOS °22).

ACM, 768-781.

Hanfei Yu, Rohan Basu Roy, Christian Fontenot, Devesh Tiwari, Jian

Li, Hong Zhang, Hao Wang, and Seung-Jong Park. 2024. Rainbow-

Cake: Mitigating Cold-starts in Serverless with Layer-wise Container

[41

—

[46

—

(47

—

[48

[t

(49

—

[50

[t

[51

—

[52

—

[54

—

(55

[

(56

—

Caching and Sharing (ASPLOS °24). ACM, New York, NY, USA, 335-350.
doi:10.1145/3617232.3624871

[57] Yanqi Zhang, Tiigo Goiri, Gohar Irfan Chaudhry, Rodrigo Fonseca,
Sameh Elnikety, Christina Delimitrou, and Ricardo Bianchini. 2021.
Faster and Cheaper Serverless Computing on Harvested Resources. In
Proceedings of the ACM SIGOPS 28th Symposium on Operating Systems
Principles (Virtual Event, Germany) (SOSP "21). ACM, 724-739.

[58] Ming Zhao, Kritshekhar Jha, and Sungho Hong. 2023. GPU-enabled
Function-as-a-Service for Machine Learning Inference. In 2023 IEEE
International Parallel and Distributed Processing Symposium (IPDPS).
918-928.

[59] ZhuangZhaung Zhou. 2025. aquatope. https://github.com/zzhou612/
aquatope.

[60] Zhuangzhuang Zhou, Yanqi Zhang, and Christina Delimitrou. 2022.
AQUATOPE: QoS-and-Uncertainty-Aware Resource Management for
Multi-stage Serverless Workflows. In Proceedings of the 28th ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 1. 1-14.

A Artifact Appendix
A.1 Abstract

Our artifact supplies the scripts and source code to reproduce
simulated FeMux results based on the Azure 2019 dataset in
our paper, including metric comparison results, forecaster
switching analysis (Fig. 8), FeMux performance (Fig. 11),
and FeMux with different RUMs (Fig. 12). While all FeMux
simulation results can be reproduced by configuring our
artifact, we configure our artifact and highlight the steps to
reproducing the key steps for brevity.

A.2 Description & Requirements

A.2.1 How to access. All relevant source code, scripts,
and datasets alongside instructions are available on the pub-
lic Git repository (https://github.com/ubc-cirrus-lab/femux)
and Zenodo (https://doi.org/10.5281/zenodo.17180431). By
following the repository steps, users will pull and clean the
Azure 2019 dataset, transform to average concurrency, simu-
late forecasts, train the FeMux clustering, and simulate the
cold starts and wasted memory. With all of the results gener-
ated, users can run our provided plotting scripts to generate
the plots and results outlined below.

A.2.2 Hardware dependencies. Further, we recommend
configuring our scripts to run on 48 cores and 140GB of
Memory to minimize runtime, with 150GB of disk space
available. We provide time estimates based on 16 threads,
where thread count can be updated globally by changing
num_workers = 16 or by changing the parameter at the
bottom of each parallelizable script.

A.2.3 Software dependencies. Ubuntu 20.04 or newer
and Python +3.10 with the dependencies defined in require-
ments.txt. We also note that users with more than 128 cores
need to set the OPENBLAS NUM_THREADS environment
variable to a number less than 128.

A.2.4 Benchmarks. None.

https://docs.aws.amazon.com/lambda/latest/dg/lambda-concurrency.html
https://docs.aws.amazon.com/lambda/latest/dg/lambda-concurrency.html
https://github.com/PrincetonUniversity/faas-profiler
https://github.com/PrincetonUniversity/faas-profiler
https://mikhail.io/serverless/coldstarts/big3/
https://mikhail.io/serverless/coldstarts/big3/
https://doi.org/10.1109/CLUSTER.2014.6968735
https://doi.org/10.1145/3617232.3624871
https://github.com/zzhou612/aquatope
https://github.com/zzhou612/aquatope
https://github.com/ubc-cirrus-lab/femux

A.3 Set-up

After cloning the repository, we make some of the basic di-
rectories and download the azure 2019 dataset by running
setup.sh. We make two adjustments to the source code to
save significant time on reproduction. First, we comment out
Holt, Exponential Smoothing, and SETAR to significantly cut
down forecasting simulation runtime which is the bottleneck
for reproduction. Results do not change significantly as these
forecasters are selected for under 5 percent of blocks. We
also configure FFT to run on application-level traces which
affects some of the final results. For our FeMux prototype,
we use function-level traces for FFT and the IceBreaker com-
parison. This can be seen in the initialization function of
forecasting_sim.py.

A.4 Evaluation workflow
A.4.1 Major Claims.

e (C1): AR is superior for 65.2% of applications when ass-
esed using MAE, but FFT outperforms AR for 68.9% of
apps for RUM Section 4.2.1.

o (C2): Using the right forecaster per class reduces RUM
(Fig. 8).

o (C3): FeMux outperforms IceBreaker (Fig. 11).

o (C4): FeMux-CS reduces cold start seconds of premium
applications by 45% relative to FeMux, and the tiered
approach cuts memory wastage by 35.4% (Fig. 12).

A.4.2 Experiments. In the preprocessing steps, we start
with the Azure 2019 dataset and clean, format, and transform
the data for our simulations. Then in the offline simulation
steps we generate the forecasts and extract features required
for clustering and evaluation. Finally, we have FeMux results
which can be used to generate results for our claims in the
experiments that follow. All estimated times are based on
a 16-core setup. Our time estimates exclude person-time as
each step is fully automated apart from a parameter defining
the number of cores.

Preprocessing (24 Compute Hours).

1. Make some of the basic directories and download the
azure 2019 dataset: /code/setup.sh

2. Preprocess the data and generate separate dataframes
for execution times, invocation counts, and application
memory: each of the files in /preprocess, starting with
preprocess_data.py.

3. Convert invocations per minute into average concur-
rency (24h): transform_azure.py.

4. Generate training and testing split for applications:
gen_train_test_split.py

Offline Simulation (130 Compute Hours).

1. Forecasting Simulations (~120 h): forecasting/forecast.py
2. Extracting Features (~4 h): extract/feature_extraction.py

—— Azure '19 Azure '21 —— Huaweij '22 —— Huawei '24 --- IBM

g
o

3

c 08 0.8 I

¥ \

S 0.6 0.6 -

s 1

‘s 1

c 0.4 0.4 N

S S
=1

5]

302 0.2 ; ~
w

Req. Relative to Max Workload
o
S}

10! 10? 103
Workload Rank

-
2

107 10-% 107 10°* 1072 10°
Fraction of Total Traffic

Figure 15. (Left) Our dataset has a smaller proportion of
low-traffic workloads compared to prior datasets relative to
the average daily invocations, while 63% of Huawei work-
loads are timer-based. Consequently, (Right) our dataset has
the most workloads with 10% of more traffic volume rela-
tive to the maximum workload—we only show the top 1000
workloads.

3. Simulate the cold start and memory wastage based on
the simulated forecasts (~4 h): results/gen_results.py

4. Generate MAE values based on simulated forecasts for
comparing RUM and MAE ((~20 m)): results/maes.py

5. FeMux simulation: clustering_pipeline.py combines the
clustering, and simulated performance of the FeMux
prototype configured with the named features and
forecasters that have already been extracted/simulated
above (~1h).

Plotting Preparation (5 Compute Minutes).

1. /plots/setup.sh copies generated results from /data/azure
to /plots/data, and additionally unzips the pre-generated
data we provide.

2. Plotters are in /plots/plots/plotters and should be run
within the directory. Each plotter has its corresponding
plot output to a pdf file in /output_plots.

Experiments. With all data generated and moved into
/plots/data, plotting each result takes less than 5 minutes
between human intervention and compute time. Steps for
generating all plots are the same, so we will describe a single
repeatable experiment that generates results for all claims.

Experiment: [Generate Figures]: Results for each claim (C1-
C4) are generated using the following steps.

[Execution] Run each file in /plots/plotters/. Plotter names
summarize the result and section in the paper. We include
sec_4_switching.py for completeness, and do not reproduce
the FeMux result for the FaasCache comparison in the prior
work comparison.

[Results] View the figure associated with each plotter in
/plots/output_plots.

B Additional Insights From Our Dataset
B.1 Cross-Workload Request Variations

Here, we show how the traffic patterns of various workloads
in our dataset differ from those in previous datasets. We

avoid comparing absolute traffic numbers, as each dataset
represents an unknown fraction of the total traffic served by
a different provider. The traffic volumes are higher in our
trace for mid-popularity workloads compared to past data
based on IAT distributions. This skew is better captured in
Fig. 15-Right. IBM has over 30 workloads accounting for 10%
or more of the traffic generated by the most popular trace,
while Huawei 2022, Azure 2019, Azure 2021, and Huawei
2024 have 18, 12, 10, and 7 respectively. Fig. 15-Left shows
the CDF of fraction of total traffic attributed to different
workloads. Azure 2021 has the highest normalized traffic
across workloads, as the overall volume was 2M requests
across 14 days. Among large-scale datasets, with >25M daily
invocations, IBM workloads make up the largest fraction
of total traffic; our median trace has two to four orders of
magnitude higher relative traffic volume compared with the
median trace from Azure 2019 and Huawei datasets. We also
observe a large difference in traffic volume across regions
within the same provider: regions from the Huawei 2024
dataset have total traffic volume ranging from 125M to 39.3B.

Fig. 15-Left also reveals that workloads from most datasets
are variable in traffic volume. Huawei’s datasets are an ex-
ception, showing significant traffic similarities across a large
portion of workloads, as evidenced by prominent vertical
jumps in the CDF curves. This cross-workload variability
affects the choice of models for traffic prediction (consider-
ing overhead and delay budget), the scheduling assumptions
(regarding scheduling delay), and the aggressiveness of re-
source reclamation.

B.2 Benefits of Long Traces

Examining individual workload patterns can provide insights
into the load variation phases that workloads experienced
over extended periods. For instance, workload A showcases
daily and weekly periodicity, with an increasing trend in
traffic throughout in January, before maintaining a weekly
average in February. Further, the New Year’s Day and span-
ning the first two weeks of January, workload B experiences
several hourly peaks between 75k-100k requests per hour,
before the traffic returns to the standard hourly peaks of 25k-
50k requests per hour (Fig. 16-Bottom). For either of these
workloads, a month-long or two-week-long trace would not
provide a holistic view of the trends and seasonality of these
workloads. Understanding these trends across workloads is
valuable for pursuing antagonistic colocation strategies and
avoiding simplistic assumptions. Additionally, using long-
term and rich traces allows for realistic stress testing of
utilization-enhancing techniques.

C Sensitivity Studies

FeMux vs. Individual Forecasters. Fig. 17 compares the
performance of individual forecasters with their multiplexed

40000 q

20000

Requests

—— Workload A

100000 Workload B

50000 q

Requests

12/29 01/05 01/12 01/19 01/26 02/02 02/09 02/16 02/23
Time

Figure 16. We select two example workloads that showcase
the benefits of long traces: given a trace spanning many
weeks, we can observe seasonal increases in traffic during
early January (Top), and a slowly increasing average load
trend in requests over two months (Bottom).

le8

E F 10 10-min KA
H 5-min KA

AR
ExpSmoothing
FFT
24 Holt

/ Markov Chain
14 SETAR
Optimal FeMux

0 T T T T Perfect Switching
0 1 2 3 4 5

Cold Start Seconds le6

Wasted GB-seconds

Ow=xnm>

Figure 17. FeMux outperforms individual forecasters in-
cluded in its set of forecasters.

combination (FeMux). The contours represent lines of con-
stant RUM based on the default weights (Eq. (1)). Some fore-
casters (e.g., fixed keep-alive or AR) are conservative, mini-
mizing cold starts but increasing wastage. Some (e.g., Expo-
nential Smoothing or Markov Chain) reduce wastage at the
cost of more cold starts. FeMux automatically multiplexing
across the most suitable forecaster per application. Here, it
switched between forecasters for over 65% of applications,
with 20% switching between 4 or more different forecasters.
The system is flexible, allowing providers to integrate any
forecasters they find suitable.

Features. We compare different combinations of features
in Fig. 18. First, we see that adding more features improves
results by providing differentiation power to the classifier.
However, this yields diminishing returns. Secondly, the per-
formance of a set number of features can vary based on the
selected features—all combinations that include harmonics
perform better. Third, complementary features seem to work
better than top-performing features; Density+Harmonics
performs better than Stationarity+Harmonics, despite the
fact that Stationarity and Harmonics are two best single
features. The features chosen in this work are to showcase

the benefits of classification-based forecaster multiplexing.
FeMux works with any other feature(s).

Block Size. After evaluating block sizes between 7-24
hours, we observe that increasing the block size reduces
FeMux’s RUM slightly (<3%). This is because a larger block
size helps capture larger patterns which benefits certain
forecasters, like Holt which removes trends. However, long
block sizes result in slower adaptation to changing applica-
tion patterns, as a new forecaster can only be selected at
block boundaries. To hit a balance, we chose a block size of
504 minutes. The specific figure ensures an integer number
of blocks over the 14-day Azure trace (40 blocks).

1le8

3.0
DHPHLH H
n 2.8 DESH oy
©
S
v} [_5
$ 2.6
m
) 5
8 247 Densit:
7 b o DL
g H Harmonics
224 | Linearity)
S Stationarity
2.0 T T T T T T
2.00 2.25 250 2.75 3.00 3.25 3.50
Cold Start Seconds le6

Figure 18. Combining statistical features boosts classifier
accuracy by enhancing differentiation. Combinations with
same-size share similar colors.

	Abstract
	1 Introduction
	2 Background
	2.1 Evolution of Serverless Compute
	2.2 Resource Management Policies

	3 Characterization
	3.1 The Need for New Serverless Characterization
	3.2 Second-Scale Resource Management
	3.3 Platform Delay
	3.4 Resource Configuration Patterns

	4 Enhanced Lifetime Management
	4.1 Towards Flexible Metrics
	4.2 Towards Flexible Traffic Forecasting
	4.3 FeMux

	5 Evaluation
	5.1 Simulation Results
	5.2 Knative Prototype

	6 Related Work
	7 Conclusion
	Acknowledgments
	References
	A Artifact Appendix
	A.1 Abstract
	A.2 Description & Requirements
	A.3 Set-up
	A.4 Evaluation workflow

	B Additional Insights From Our Dataset
	B.1 Cross-Workload Request Variations
	B.2 Benefits of Long Traces

	C Sensitivity Studies

