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Abstract
Public cloud serverless platforms have attracted a large user
base due to their high scalability, plug-and-play deployment
model, and pay-per-use billing. However, compared to virtual
machines and container hosting services, modern serverless
offerings typically impose higher per-unit time and resource
charges. Additionally, billing practices such as wall-clock
time allocation-based billing, invocation fees, and usage
rounding up can further increase costs.

This work, for the first time, holistically demystifies these
costs by conducting an in-depth, top-down characterization
and analysis from user-facing billing models, through re-
quest serving architectures, and down to operating system
scheduling on major public serverless platforms. We quan-
tify, for the first time, how current billing practices inflate
billable resources up to 4.35× beyond actual consumption.
Also, our analysis reveals previously unreported cost drivers,
such as operational patterns of serving architectures that
create overheads, details of resource allocation during keep-
alive periods, and OS scheduling granularity effects that
directly impact both performance and billing. By tracing the
sources of costs from billing models down to OS scheduling,
we uncover the rationale behind today’s expensive serverless
billing model and practices and provide insights for design-
ing performant and cost-effective serverless systems.

CCS Concepts: • Computer systems organization →
Cloud computing; • General and reference→Measure-
ment; • Software and its engineering→ Scheduling.

Keywords: Serverless Computing, Cloud Computing, Per-
formance Measurements, Billing Models, OS Scheduling

ACM Reference Format:
Changyuan Lin, Yuanzhi Ma, and Mohammad Shahrad. 2026. De-
mystifying Serverless Costs on Public Platforms: Bridging Billing,
Architecture, and OS Scheduling. In European Conference on Com-
puter Systems (EUROSYS ’26), April 27–30, 2026, Edinburgh, Scotland

∗Conducted the research while at The University of British Columbia.

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.
EUROSYS ’26, Edinburgh, Scotland UK
© 2026 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-2212-7/26/04
https://doi.org/10.1145/3767295.3769374

UK. ACM, New York, NY, USA, 18 pages. https://doi.org/10.1145/
3767295.3769374

1 Introduction
Serverless computing has become one of the mainstream
cloud computing paradigms, enabling developers to quickly
deploy scalable and event-driven applications on the cloud
without needing tomanage the underlying infrastructure [41,
50]. Major cloud providers offer serverless computing solu-
tions, such as AWS Lambda [93], Google Cloud (GCP) Run
functions [23], Azure Functions [12], IBM Cloud Code En-
gine [31], and CloudflareWorkers [33]. Serverless computing
stands out as the purest existing pay-per-use cloud model,
offering automated scaling—from zero to thousands of in-
stances in seconds—and fine-grained billing. As a result, it is
often advertised as cost-efficient [36, 43, 50, 92, 113].
The widely acknowledged benefits of serverless archi-

tectures—such as high scalability, fine-grained pay-per-use
billing, freedom from infrastructure management, and seam-
less integration with other cloud services—are not without
associated costs [44, 49, 110]. In terms of the per-unit re-
source price, serverless offerings are often priced higher
than other cloud computing paradigms, such as virtual ma-
chines (VMs) and containers running on container hosting
platforms. We demonstrate this by comparing the price of
AWS Lambda functions, AWS EC2 VMs, and AWS Fargate
containers, all configured on identical ARM-based hardware
in the us-east-2 region. We specifically chose ARM due to the
diverse and performance-varying nature of AWS’s x86 pro-
cessors, which complicates fair comparisons across services.
An AWS Lambda function with 1 vCPU, 1,769MB of mem-
ory, and 512MB of ephemeral storage costs $2.3034 × 10−5
per second [92], while a compute-optimized EC2 instance
(c6g.medium) with 1 vCPU, 2 GB memory, and 1GB storage
and an AWS Fargate container with the identical resource al-
location as EC2 cost only $9.4753×10−6 and $1.1003×10−5 per
second, which are 41.1% and 47.8% of the AWS Lambda price.
The cost of VMs can be further decreased by at least two
times if using a burstable instance (e.g., AWS EC2 t4g.small
flavor). Also, this comparison does not include the invoca-
tion fee of AWS Lambda, which is $2 × 10−7 for each re-
quest, whereas EC2 instances and Fargate containers do
not charge request fees. Additionally, our analysis of billing
practices on major serverless platforms uncovers significant
over-accounting (§2), showing that users can be charged
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for computing resources up to 4.35 times greater than their
actual usage.

These observations motivate a fundamental research ques-
tion:What makes serverless expensive?We argue that
the root cause of the high unit prices and expensive billing
practices in serverless lies in the architecture of modern
serverless computing systems. Resource consumption and
overhead incurred by the underlying runtimes and control
plane for request serving, such as sandbox provisioning, iso-
lation, request dispatch, and keep-alive, translate into higher
per-unit charges passed on to serverless users. Additionally,
some of our measurements of resource allocation patterns
and performance behaviors on major serverless platforms
point part of the execution costs and performance fluctua-
tions to the underlying operating system (OS) scheduling
mechanisms.
To uncover these costs, a detailed analysis of current

billingmodels together withmeasurements of the underlying
serverless systems is required. Previous studies have charac-
terized major serverless platforms in terms of architecture,
performance, and resource management [1, 40, 109, 114].
However, as serverless computing evolves rapidly and more
serverless offerings become available, some earlier measure-
ments do not reflect or fully capture the latest billing scheme
and operation patterns (e.g., serving architecture and keep-
alive behaviors) of the public serverless computing platforms.
In this work, we revisit some of the previous measurements
and extend some of their performance and overhead charac-
terization to fit modern serverless systems.

We adopt a top-down approach to analyze serverless costs.
We start with user-facing billing models and conduct large-
scale trace analysis on the billing scheme. Then, we analyze
the performance, overhead, and resource allocation patterns
of modern serverless request serving architectures. Finally,
we investigate the impact of OS scheduling in detail. By trac-
ing sources of costs from the billing model down to kernel
scheduling, we provide the first comprehensive decomposi-
tion of serverless overhead and reveal the rationale behind
current billing practices. For example, our large-scale, trace-
based billing model analysis reveals significant bill inflation
due to wall-clock allocation-based billing (§2.3), turnaround
time billing (§2.4), rounding up of resource usage and ex-
ecution duration, coarse billing granularity, and high in-
vocation fees (Table 1 and §2.5). Also, we investigate the
dual penalty of slowdowns and higher bills stemming from
the multi-concurrency model (§3.1), high overheads of the
HTTP-based request serving architecture (§3.2), and details
of resource allocation during keep-alive (§3.3). Furthermore,
we reveal the widespread CPU overallocation issue on public
serverless platforms for the first time (§4). Specifically, our
main contributions include:

• We conduct a detailed analysis on the billing practices of
current major serverless platforms (§2).

• We analyze and quantify the overhead of modern server-
less systems from several new aspects, including the con-
currency model, request serving architectures, and re-
source allocation behaviors during keep-alive (§3).
• We characterize and reveal the impact of OS scheduling
granularity on major public serverless platforms (§4).
• We demystify the serverless billing practice through these
new characterization results and analyses, and discuss im-
plications (labeled with I ) for designing future performant
and cost-efficient serverless systems.
We have made our artifact publicly available1.

2 Serverless Billing Models and Practices
Pay-per-use is the common billing practice on serverless plat-
forms. Billing models are the most direct determinants of the
serverless cost as they convert billable resources (i.e., com-
puting resources that are being billed for cloud users) into
monetary charges that users immediately perceive. Billing
models vary across platforms. In this section, we systemati-
cally deconstruct these billing practices to reveal how they
shape the cost of serverless, reveal the underlying reasons
for relevant billing practices, and discuss implications.

2.1 Overview of Serverless Billing Models
Table 1 summarizes the pay-per-use billing model on major
serverless platforms listed in recent market reports [41, 77].
While definitions of billable resources, wall-clock time, and
pricing vary across different serverless platforms, most pub-
lic serverless platforms bill a function invocation based on
four factors: (1) billable wall-clock duration, (2) resource al-
location amount and/or actual resource consumption over
billable duration, (3) billing granularity and/or minimum
billing cutoffs, and (4) a fixed fee associated with each invo-
cation, which can be generally modeled as:

Cost =
∑︁

𝑟 ∈𝑅ALLOC

⌈
𝐴𝐿𝐿𝑂𝐶 (𝑟 )

𝐺𝑟

⌉
×𝐺𝑟 ×

⌈
𝑇

𝐺𝑇

⌉
×𝐺𝑇 ×𝐶𝑟

+
∑︁

𝑟 ∈𝑅USG

⌈
𝑈𝑆𝐺 (𝑟 )

𝐺𝑟

⌉
×𝐺𝑟 ×𝐶𝑟 + 𝐶0

(1)

where𝑇 is the billable wall-clock time (e.g., wall-clock execu-
tion duration, turnaround time including initialization dura-
tion, or function instance lifespan), 𝑅𝐴𝐿𝐿𝑂𝐶 is the set of bill-
able computing resources that follow allocation-based billing
(e.g., vCPUs, memory, GPU, and storage), 𝐴𝐿𝐿𝑂𝐶 (𝑟 ) defines
the allocation amount of billable resources 𝑟 over 𝑇 , 𝑅𝑈𝑆𝐺

is the set of billable resources to which consumption-based
billing applies (e.g., network bandwidths and consumed CPU
time of Cloudflare Workers), 𝑈𝑆𝐺 (𝑟 ) defines the absolute
usage amount of billable resources 𝑟 over𝑇 ,𝐺𝑟 and𝐺𝑇 define
the billing granularity of resource 𝑟 and wall-clock time 𝑇
for rounding up or minimum billing cutoff (e.g., 128MB and
1https://doi.org/10.5281/zenodo.17162822
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Serverless Platform Billable Time Billable Resources∗ Billing Granularity/Cutoffs Control Knobs and Steps

AWS Lambda [89, 92, 93] Wall-Clock
Turnaround Time∗∗ Allocated Memory 1ms Memory 1MB

(CPU proportionally allocated)
Google Cloud Run

(Request-Based Billing) [22, 23, 28]
Wall-Clock

Turnaround Time Allocated Memory and CPU 100ms Memory 1MB
CPU 0.01 vCPUs (1st Gen)/1 vCPU (2nd Gen)

Google Cloud Run
(Instance-Based Billing)∗∗∗ [22, 23, 28]

Wall-Clock
Instance Time Allocated Memory and CPU 100ms Memory 1MB

CPU 1 vCPU

Azure Functions Consumption Plan
[11–13]

Wall-Clock
Execution Time Consumed Memory 1ms (min cutoff 100ms)

128MB

N/A
(Fixed resource size of

1.5 GB memory and 1 vCPU)
Azure Functions Premium Plan∗∗∗

[10, 12, 13]
Wall-Clock

Instance Time Allocated Memory and CPU 1month
(minimum monthly cost applies)

CPU and Memory
(Fixed Combos)

Azure Functions Flex Consumption Plan
[8, 11, 12]

Wall-Clock
Execution Time Allocated Memory 100ms (min cutoff 1 s) Memory (Either 2GB or 4GB)

(CPU proportionally allocated)
IBM Cloud Code Engine Function

[31, 45]
Wall-Clock

Turnaround Time Allocated Memory and CPU 100ms Memory (Fixed Combos)
CPU (Fixed Combos)

Huawei Cloud Function Graph [29] Wall-Clock
Execution Time Allocated Memory 1ms Memory (Fixed CPU-Memory Combos)

Alibaba Cloud Function Compute
[17–19]

Wall-Clock
Execution Time Allocated Memory and CPU 1ms Memory 64MB

CPU 0.05 vCPUs
Oracle Cloud Functions

[32]
Wall-Clock

Execution Time Allocated Memory Not Documented Publicly Memory (Fixed Combos)

Vercel Functions [106] Wall-Clock
Execution Time Allocated Memory Not Documented Publicly Memory 1MB

(CPU proportionally allocated)

Cloudflare Workers [33] Consumed
CPU Time Consumed CPU 1ms N/A

(Fixed resource size of 128MB memory)
∗This table and related analysis in §2 focus on the most basic billable computing resources (i.e., CPU and memory). Other billable resources (e.g., storage,
GPUs, and network bandwidths) may apply in practice. ∗∗AWS bills wall-clock turnaround time that includes initialization duration starting August 2025 [48].
∗∗∗Instance-based billing applies, where platforms charge for resource allocation over the function runtime instance lifespan regardless of requests.

Table 1. The billable models of major public serverless platforms. The notion of billable time, billable resources, and
billing granularity varies across different serverless platforms (as of 2025-05-15).

100ms), 𝐶𝑟 is the per-unit price of resource 𝑟 , and 𝐶0 is the
fixed invocation fee.

Depending on whether to use the whole function instance
lifespan as the billable time, the billing model can gener-
ally be categorized into request-based billing (e.g., platforms
other than the two listed with instance-based billing in Ta-
ble 1) and instance-based billing (e.g., Azure Functions Pre-
miumPlan andGoogle Cloud Runwith instance-based billing
in Table 1). In request-based billing, each request is charged
separately based on its execution duration (or turnaround
time) and/or allocated/consumed resources during the bill-
able period, while instance-based billing usually charges for
provisioned resources on always-ready/scaled-out instances
(resource allocation over instance lifespan) regardless of re-
quests. On most platforms, users can enable instance-based
billing by changing the billing setting or configuring pro-
visioned concurrency, minimum instances, or scale-down
delay for their functions [22, 90]. The fixed invocation fee
(𝐶0) is usually not applied under instance-based billing.

Figure 1 illustrates the CPU and memory prices on major
serverless platforms presented in Table 1, which shows that
the per-unit resource prices are often very similar across
platforms. Following the serverless versus non-serverless
cost comparison discussed in §1, this consistency in high
per-unit resource prices indicates that (I1) the high price
of serverless computing is not the result of any single
provider’s billing strategy (AWS already offers some of
the lowest per-unit resource prices).
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Figure 1. Resource (i.e., vCPU and memory) prices on
major serverless platforms discussed in Table 1. The
per-unit vCPUs and memory prices are generally similar
across serverless platforms (as of 2025-05-15).

2.2 Coupled Control Knobs and Billable Resources
(I2)Control knobs and billable resources are tied closely,
but allocated resources are always billed directly or in-
directly: The billable resources in serverless billing models
are usually mainly defined by the available control knobs.
Public serverless platforms usually bill the computing re-
sources they expose to users as control knobs. For example,
AWS Lambda, Vercel Functions, and the Azure Functions
Flexible Consumption allocate vCPUs in proportion to the
allocated memory size. Some platforms, such as Huawei
Function Compute, Azure Functions Consumption, and Or-
acle Functions, offer only a fixed set of memory sizes or
fixed vCPU–memory pairs, rather than fine-grained con-
figurations (e.g., per-MB memory configuration). In these
cases, billing often appears to be based solely on memory
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allocation/usage, but the cost of CPU is embedded implic-
itly within the memory price. For instance, an AWS Lambda
function with 1,769MB of memory (which corresponds to
1 vCPU [89]) incurs a charge of $2.8792 × 10−5 per second,
while a GCP function (first generation with request-based
billing) provisioned with 1 vCPU and 1,769MB of memory
costs $2.8319 × 10−5 per second. The price per GB-second of
memory on the platforms that mainly expose and bill mem-
ory control knobs usually closely matches what one would
pay for memory and CPU on platforms that allow separate
CPU allocations. Also, the ratio between the unit prices of
CPU (in vCPU-seconds) and memory (in GB-seconds) on
GCP, AWS Fargate (a container hosting platform that bills
CPU and memory separately) [91], and IBM Cloud Code
Engine (function workloads) lies in a narrow range between
9 and 9.64, indicating a broad industry consensus on the
relative value of vCPU versus memory.
On serverless platforms where vCPU and memory set-

tings are relatively decoupled, CPU andmemory are typically
billed as two separate resources. However, even these plat-
forms impose limits on how finely resources can be tuned.
For example, Alibaba Cloud requires the ratio of vCPU to
memory (in GB) to remain between 1:1 and 1:4, with step
sizes of 0.05 vCPUs and 64MB of memory [19]. Similarly,
GCP imposes a minimum CPU allocation on the configured
memory size (e.g., allocated memory of 512MB must be con-
figured with at least 0.333 vCPUs) [25]. These constraints on
resource control knobs usually reflect an underlying function
placement challenge: highly unbalanced CPU-to-memory
combinations can fragment the resource capacity on host
servers, potentially leading to higher deployment costs; e.g.,
through decreased deployment density [16, 68], or higher
scheduling delay waiting for placement [53, 84].

2.3 Inflation of Billable Resources
(I3) Billable resources are greatly inflated under wall-
clock time allocation-based billing: Understanding the
amount of billable resources under different billing models
is critical to evaluating the cost of serverless platforms. To
measure how much billable resources users pay on public
serverless platforms, we analyze 558.74 million2 requests
from the Huawei serverless trace (Huawei Public request
tables) [51, 53] and compute the billable vCPU time and the
billable memory resources of each request under the billing
models presented in Table 1. To avoid distortions from dif-
ferences in per-unit prices on different platforms (however,
they are mostly similar as discussed in §2.1), we report raw
billable resources rather than cost in dollars. Figure 2 shows
the distribution of these billable vCPU times and memories
across requests under several representative billing mod-
els and resource allocation patterns, including proportional

2The Huawei trace contains over 947.97million requests. We exclude the
requests reporting zero CPU usage or missing valid pod IDs/flavors.
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Figure 2. Billable resources under different billingmod-
els. The billable resources can be multiple times higher than
actual consumption on major serverless platforms.

vCPU allocation (AWS Lambda), fixed vCPU-memory com-
binations (Huawei), wall-clock duration and resource usage
rounding (GCP and Azure), and usage-based billing (Cloud-
flare Workers). As discussed in §2.2, CPU pricing is usually
embedded for platforms with memory-based billing. There-
fore, we include billable vCPU time for AWS.
The gap between billed and actual resource usage quan-

tifies the degree of inflated billable resources on current
serverless platforms. Our analysis reveals that, under cur-
rent models, billable vCPU time exceeds actual CPU usage
by a factor of 1.01× (Cloudflare) up to 3.63× (GCP) on av-
erage, and billable memory exceeds real memory use by
1.57× (Azure) up to 4.35× (GCP) on average, among which
usage-based billing (Cloudflare billable CPU and Azure bill-
able memory) shows the lowest inflation. While differences
in unit pricing shift the curve horizontally, these ratios re-
main the same (we do not compare absolute costs across
platforms). Also, when mapping Huawei’s reported vCPU
and memory allocations to AWS, we choose the larger of the
two values to match its proportional vCPU allocation, which
makes AWS billable resources slightly higher than Huawei.
One of the major driving factors of inflated billable re-

sources is allocation-basedwall-clock time billing. EvenAWS,
with one of the finest billing granularities (i.e., 1ms), charges
billable vCPUs and memory, 2.49× and 2.72× higher than
actual consumption on average. Functions rarely consume
their full resource allocation [52, 75], and wall-clock time in-
cludes periods when functions hold resources but remain idle
or use little (e.g., blocking on remote API calls). Figure 3 illus-
trates resource usage relative to allocations. More than 65%
of requests use less than 50% of the allotted CPU, and around
76% of requests use less than half of the allotted memory. The
scatter plot of CPU and memory utilization shows a Pear-
son correlation of 0.552 and a Spearman correlation of 0.565,
which is slightly smaller than the value reported on server-
less traces of Huawei private cloud (i.e., 0.6) in 2023 [52].
The moderate Pearson correlation suggests that the linear
relationship is not strong, indicating that decoupling vCPU
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Figure 3. Resource utilization rate distributions and
their correlations. Huawei serverless traces [51, 53] show
that serverless functions usually have low utilization of al-
located resources. Billable resources are further inflated by
inflexible resource control knobs as no strong linear relation-
ships between CPU and memory utilization rates exist.

and memory configurations is crucial for reducing inflated
costs. Inflexible allocations (e.g., proportional/linear) force
developers to over-provision one resource to satisfy another
bottleneck [15, 107].
Although usage-based billing offers the lowest inflation

in billable resources, it currently faces limitations and has
not gained widespread adoption across providers. Cloudflare
Workers is the only platform we studied that bills only on
actual CPU time and aligns well with the actual CPU us-
age. However, it caps code artifacts at 10MB and memory
at 128MB. This is mainly designed for small, short, single-
threaded JavaScript or WebAssembly (Wasm) tasks (under
1–2ms) running on the V8 engine within their content deliv-
ery network (CDN) [4, 34, 35], rather than general serverless
workloads. Note that we do not argue that billing solely on
the absolute amount of consumed resources is the only valid
model in serverless computing. This is because resource allo-
cation tied to wall-clock time, particularly for resources like
memory (which is risky to overcommit [102]), significantly
impacts function scheduling and deployment density. An
ideal pay-per-use billing model is one that tracks real usage,
exhibiting a perfect positive correlation statistically. There
have been recent studies that aimed to move towards this
ideal direction through dynamic or cooperative scheduling,
or new billing models [16, 73, 81, 116].

2.4 Turnaround Time Billing and Cold Starts
(I4) Billing on wall-clock turnaround time has become
a common practice to compensate for the initialization
phase: The serverless runtime sandbox lifecycle typically
consists of initialization (cold start), request execution, keep-
alive, and shutdown (e.g., SIGTERM handling) [72, 94]. De-
pending on whether the initialization duration is included,
serverless providers usually define billable wall-clock time
as either execution time or turnaround time (i.e., execution
time plus initialization) in their request-based, pay-per-use
billing models. Besides billing based on execution time and
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Figure 4. The differences between the billable CPU and
memory resources consumed during request execution and
those during initialization.

turnaround time, users may customize provisioned concur-
rency, minimum instances, or scale-down delay, and pay for
the whole runtime instance lifespan (i.e., instance time) on
most platforms. Such instance time billing can further in-
crease billable resources under bursty traffic patterns since
scale-down-to-zero is delayed or disabled, and instance idle
time is billed. We observe that billing based on turnaround
time has become increasingly popular on major platforms:
GCP and IBM explicitly state that they charge for the turn-
around time [28, 45], while AWS recently updated its billing
model to include the initialization phase (cold start delay)
starting August 2025 [48].
Our analysis of cold start resource usage helps explain

why providers favor turnaround time billing. We analyze
388,955 traceable cold starts from the Huawei serverless
traces [51, 53]. For each cold start, we consider the duration
spent on the initialization of the runtime sandbox and the
resource allocation. We compute the difference between the
billable resources (measured in wall-clock resource alloca-
tions) consumed during cold start and the sum of billable
resources used by all subsequent requests within the sandbox.
A negative difference means the cold start alone consumed
more billable resources than all later requests combined. Fig-
ure 4 quantifies, for the first time, such relative resource
cost of cold starts compared to subsequent executions on
production systems, which shows that 42.1% of cold starts
produce a zero or negative difference. In other words, under
a billing model based on purely execution duration of re-
quests, providers would charge less (or the same) for request
execution than the actual cost of the initialization phase in
about 42.1% of cold start cases.

To avoid this revenue gap, it is a natural choice for providers
to include initialization delay in the billed duration, i.e., to bill
on turnaround time, which also captures variation in initial-
ization delays (and wall-clock-based resource usage) across
functions with different language runtimes and dependency
requirements. Also, providers may impose additional billing
components to offset cold start costs, such as a fixed per-
invocation fee and minimum billing cutoffs for billable time
and resources, which we further discuss in §2.5. Additionally,
the results also show that a small portion of functions exhibit
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Figure 5. The equivalent billable wall-clock time of invoca-
tion fees (left) (as of 2025-05-15) and the rounded-up amount
of billable wall-clock time and memory (right).

a long tail of negative resource differences, indicating that
turnaround-time billing can substantially increase the cost
of these functions.

2.5 High Invocation Fee and Expensive Rounding Up
Major serverless platforms charge a fixed fee per invocation,
typically between $1.5 × 10−7 and $6 × 10−7 per request [17,
92, 106]. Although these amounts seem small, they can add
up disproportionately when functions run for very short
durations or use minimal resources. For example, on AWS
Lambda, a fixed invocation fee of $2 × 10−7 is equivalent
to 96ms of billable wall-clock time for a function with the
default 128MB memory configuration, which exceeds the
average execution durations reported in the Huawei traces
(i.e., 58.19ms) [53]. Figure 5-left shows how invocation fees
convert to equivalent billable wall-clock time across different
platforms. Besides invocation fees, several platforms apply
coarse billing granularity (minimum billing increments) or
cutoffs.
The charts on the right in Figure 5 present the inflated

billable time and memory usage under different billing gran-
ularities for 527.05 million requests with execution times of
at least 1ms in Huawei traces [51, 53]. For a 100ms billing
granularity (e.g., GCP and IBM), the average rounded-up
wall-clock time is 77.12ms, while for a 1ms granularity with
a 100ms minimum cutoff (e.g., Azure Consumption), the av-
erage rounded-up wall-clock time is 61.35ms. When billing
memory with a 128MB granularity (e.g., Azure Consump-
tion), the average rounded-up billable memory is 2.67 ×
10−2 GB-seconds. These values are on the same order of
magnitude as the average execution durations and billable
memory amounts reported in the studied serverless traces
(58.19ms and 2.75 × 10−2 GB-seconds).

Therefore, our analysis shows that (I5) invocation fees
are high, and together with billing granularity, they
can cause disproportionate costs for short, small func-
tion invocations. These extra costs may not be explained

only as a way to offset resource usage during the initial-
ization phase (cold start), since providers that bill for turn-
around time still charge the invocation fee. They may further
be linked to overheads in the serving architecture and OS
scheduling, which we analyze further in §3 and §4.

3 Hidden Cost of Serverless Serving
Architecture

Serverless computing platforms usually abstract away low-
level infrastructure details. However, the overhead of the un-
derlying serving layer directly affects how providers sched-
ule and run serverless workloads and at what cost. These
are passed on to the users as the billing model and pricing
parameters. Therefore, studying serverless serving architec-
tures is key to understanding serverless computing costs.
In this section, we analyze the serverless runtime of major
serverless platforms, run benchmarks on major platforms to
quantify the costs that remain hidden in the serving layer,
and discuss their implications on cost.

3.1 Cost Implications of the Concurrency Model
Serverless platforms vary in how they map concurrent re-
quests to sandboxes. Depending on the maximum number of
concurrent requests allowed per sandbox, there are two com-
mon serving models: the single-concurrency model, in which
the concurrency limit is strictly one (i.e., no intra-runtime
concurrency), and the multi-concurrency model, where the
concurrency limit can be greater than one.
In the single-concurrency model (e.g., AWS Lambda and

Cloudflare Workers), each sandbox accepts only one request
at a time. When a request arrives, the serverless platform
allocates a new runtime sandbox or reuses a warm, idle
sandbox for the request. As there is no resource competition
(e.g., CPU and memory) among concurrent requests, this can
help keep the execution duration consistent even under high
load.
Under the multi-concurrency model, multiple requests

can enter and be executed within the same sandbox concur-
rently, if the user code supports concurrency. Platforms using
this model usually allow users to set the maximum concur-
rency per sandbox and concurrency-based scaling policies.
However, (I6) if the extra control knob on concurrency
is not configured properly, multi-concurrency can de-
grade function performance while increasing cost since
resource contention (e.g., CPU, memory, and cache) slows
down all concurrent requests and increases billable wall-
clock time (e.g., execution time) under request-based billing.
For example, running two CPU-bound requests, each requir-
ing 1 s of CPU time, together in a sandbox with 1 vCPU
doubles the execution duration of each request to 2 s, thus
doubling billable resources as well. In practice, such slow-
downs stemming from resource contention are often worse
due to context switch overhead and cache misses [96].
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To show how concurrency models affect performance and
cost, we deploy the same compute-intensive function (PyAES
from Functionbench [62]) on AWS Lambda and GCP with
1 vCPU allocation. Each request takes about 160ms of CPU
time. We use the default concurrency configurations (i.e.,
limit of 80) and scaling policy (60% CPU utilization target and
concurrency-based scaling [20]) on GCP. At various request
rates (in RPS), we send bursts of requests for 120 s to simulate
a short traffic spike. The plot on the left in Figure 6 presents
the average execution duration reported by providers. AWS
maintains a stable execution time at all request rates due
to dedicated sandboxes without resource contention. The
average execution time (and cost) of the function deployed
on GCP rises by up to 9.65× when the request rate is higher
than 6 RPS.

Longer traffic logs reveal a key caveat ofmulti-concurrency
models: it takes time to gather scaling metrics to scale in-
stances to match demand. We send a steady traffic of 15 RPS
to the GCP function for 20 minutes. The plot on the right
in Figure 6 shows the first five minutes (later data remains
stable) of execution time and container count reported by
GCP. Scaling does not begin until about 40 s. This is likely
due to the fact that platforms with the multi-concurrency
serving model usually aggregate the scaling metrics over a
time window (e.g., 60 s by default in Knative [65]) to avoid
oscillation [6]. The execution duration and instance count
remain stable after around 90 s, but the average duration is
still 1.43 times higher (i.e., 239.29ms versus 166.78ms) than
that under the RPS of 1 due to resource contention.
Such a dual penalty of slowdowns and higher bills stem-

ming from the multi-concurrency model is particularly con-
cerning, given that a recent characterization study reports
that 93.3% of serverless workloads on IBM Cloud Code En-
gine used Knative’s default container concurrency of 100 as
the limit [63, 79]. This suggests that most users either do
not optimize, or might be unaware of concurrency settings,
highlighting the critical need for relevant control knob tun-
ing tools and concurrency optimization guidance from cloud
providers.

3.2 Request Serving Architecture Overhead
Figure 7 depicts three common request serving architec-
tures on major serverless platforms. In the runtime API long
polling model (e.g., AWS Lambda [95]), the user provides
a handler method (non-HTTP) or a binary executable for
processing requests. A runtime program (usually offered by
providers) runs inside the sandbox and repeatedly polls the
runtime API endpoint over HTTP or RPC in a blocking in-
finite loop. The retrieved request event is processed by the
handler, and the result is posted back to the runtime API
before the next poll. In the HTTP server model (e.g., Azure,
GCP, IBM, and Knative [7, 26, 30, 64]), the function itself
runs an HTTP server on a given port, with the user logic
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Figure 6. Function execution durations under varying
request rates. The multi-concurrency serving model can
lead to non-linear slowdowns and increased costs under high
concurrency, mainly due to delays in scaling the number of
sandboxes to match the incoming request load.
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Figure 7. The threemainstream serverless request serv-
ing architectures, including (a) API long polling (e.g., AWS
Lambda), (b) HTTP server (e.g., Azure and GCP), and (c)
code/binary execution (e.g., Cloudflare Workers).

wrapped in an HTTP handler. The queue (e.g., usually run-
ning in a sidecar container) that receives the request from
the ingress acts like a reverse proxy and forwards requests
to the HTTP server. In the code/binary execution architec-
ture (e.g., Cloudflare Workers), the user uploads a code block
or precompiled binary (e.g., Wasm modules [35]). For each
request, the language runtime engine (e.g., V8 JavaScript
engine) compiles and executes (JIT) or loads and executes
the binary, captures the output, and sends back the response.
Each serving architecture has its own benefits. The API

polling architecture can avoid exposed ports and simplify the
concurrency models by serializing event handling in each
sandbox, while the HTTP server model natively supports
rich HTTP semantics. Lastly, the code/binary execution ar-
chitecture generally requires minimal runtime dependencies
and artifacts.



EUROSYS ’26, April 27–30, 2026, Edinburgh, Scotland UK Changyuan Lin, Yuanzhi Ma, and Mohammad Shahrad

AWS
128MB

AWS
1769MB

GCP
0.08vCPUs

GCP
1vCPU

Azure
Consumption

Cloudflare
Workers

0.0

2.5

5.0

7.5

10.0

12.5

15.0

Du
ra

tio
n 

(m
s)

API Polling HTTP Server Code/Bin
Execution

Execution Duration of the Minimal Function Reported by Providers

Mean
p95
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less function across platforms with different serving
architectures. The functions with HTTP servers have the
highest overhead, while code/binary execution has the small-
est.

To quantify the overhead of these architectures, we de-
ploy a minimal serverless function that simply returns an
empty string and status code across major platforms. We
measure the execution duration of the minimal function that
encapsulates pod-/container-level system software. Figure 8
presents the execution duration of the minimal function re-
ported by the providers, which reflects the latency added
by the request serving architecture, such as polling request
events, HTTP routing, and sending back responses. Our
measurements reveal that (I7) platforms using the HTTP
server architecture (i.e., GCP and Azure) usually have
notably higher overhead, compared to API polling and
code/binary execution architectures, with an average
latency up to 5.93ms. This added latency can impact short
functions or round the billable time up to the next interval.

This is due to that functions with the HTTP server model
usually host standard HTTP servers as the upstream of the
ingress, queue, and/or load balancer, which add overheads,
such as maintaining HTTP listeners, connections, thread
pools, and handler routing. Also, requests usually traverse
additional middleware (e.g., queues, ingress, and/or service
mesh sidecars) across containers and veth devices, adding la-
tencies [21, 27, 40, 117]. The resource configuration may also
affect such overhead (i.e., GCP 0.08 vCPUs vs GCP 1 vCPU),
as the HTTP request–response cycle and HTTP server in-
volve CPU-bound tasks (e.g., header and payload parsing,
encoding, and serialization), and a lower CPU allocation can
slow these operations. The AWS Lambda functions that use
long polling maintain a stable overhead of around 1.17ms
on average. Cloudflare Workers delivers near-zero latency
(falling below the precision limit of 0.01ms reported by
Cloudflare), suggesting the high efficiency of the code/binary
execution architecture.

3.3 Keep-Alive Duration and Resource Allocation
Patterns

Cold start is one of the main causes of performance degra-
dation in serverless functions, and keep-alive has become
a common practice to mitigate the cold start latency [97].
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Figure 9. Cold start probabilities versus function idle
times. The probabilities of having cold starts increase as the
function sandbox idle time becomes longer. The keep-alive
durations vary across platforms (as of 2025-05-15).

Major serverless providers keep the user function sandbox
active for a period after each request to reduce the chance of
cold starts for subsequent invocations. Common keep-alive
mechanisms include scale-down delay (e.g., Azure Consump-
tion Plan, GCP, and IBM) [20], container snapshotting [66],
code caching (e.g., Cloudflare Workers) [80], and runtime
freezing (e.g., AWS Lambda) [94]. Function keep-alive has
a direct impact on provider cost, as idle functions can hold
active resources (e.g., memory) or reserved capacity (for
some schedulers), affecting deployment density. Even tech-
niques that deallocate CPU and memory during the keep-
alive phase, such as snapshotting, freezing (e.g., microVM
pause), and caching, require CPU time for processing snap-
shots and cache/storage space. These costs are ultimately
passed on to users through per-unit resource pricing or in-
vocation fees.

We deploy serverless functions on major serverless plat-
forms and analyze the keep-alive durations as well as the un-
derlying keep-alive mechanisms. We send requests at differ-
ent idle intervals to check whether the sandbox is re-created
and empirically measure the keep-alive duration. The idle
interval is the duration between the end of the previous in-
vocation and the arrival of the next. Figure 9 presents the
probability of a cold start as a function of the sandbox idle
time, calculated over 100 data points per idle interval. The
results show that AWS Lambda keeps the function sandbox
alive for up to 300 to 360 s. Azure is likely to use an oppor-
tunistic keep-alive strategy, resulting in varying keep-alive
durations between 120 s and 360 s. Also, Azure pre-warms
the function if the platform detects cold starts occurring at
regular intervals (i.e., through idle time histograms) [3, 98].
However, we did not observe such behavior in our experi-
ments, despite regular traffic patterns, as we encountered
consistent cold starts at high idle times. This is probably due
to the test period being too short for Azure to learn traffic
patterns [97]. Besides, Azure may further increase the keep-
alive duration for functions with higher traffic and that have
been scaled up to multiple instances. We observe a maximum
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Serverless
Platform

Keep-Alive
Phase Behavior

Graceful Shutdown
after Keep-Alive

AWS Lambda Deallocate CPU and memory
(Freeze and Resume)

Supported with Lambda Extensions
(wait for SIGTERM handling) [87]

GCP Function
(Request-Based Billing)

Scale down CPU
(to about 0.01 vCPUs)

N/A
(kill without SIGTERM)

Azure Function
(Consumption) Run as usual N/A

(kill right after SIGTERM)
Cloudflare Workers Code/Bytecode Cache N/A

Table 2. The resource allocation behavior during keep-alive
varies across platforms (as of 2025-05-15).

keep-alive duration of around 740 s for the Azure function
that has scaled up to 3 instances. In contrast, GCP has the
longest keep-alive duration, with the most instances being
kept alive for about 900 s. Compared with the data reported
in 2018 (e.g., AWS Lambda usually kept functions alive for
up to 27 minutes) [109], our observations reveal that (I8)
keep-alive durations on current serverless platforms
still vary but have become shorter than previous mea-
surements, possibly reflecting opportunistic strategies or
measures for cost savings.

To examine resource consumption during keep-alive, we
run CPU profiling workloads (i.e., Algorithm 1 discussed in
§4) and empirically measure the CPU resources available
to sandboxes during the keep-alive phase. Table 2 summa-
rizes the resource allocation patterns of the function sandbox
during keep-alive and its graceful shutdown behavior when
exiting the keep-alive phase and being terminated across
platforms. (I9) The resource allocation behavior during
keep-alive varies across platforms, and so do its perfor-
mance and cost implications for serverless providers
and users.

AWS freezes the sandbox (e.g., puts the microVM to sleep)
and resumes it when a new request arrives [61]. Therefore,
no active CPU or memory resources are allocated during
keep-alive. On GCP, CPU allocation is dynamically scaled
down to around 0.01 vCPUs during keep-alive and is scaled
back up to the user-configured level when requests arrive
within the keep-alive window. Both AWS and GCP deallocate
or scale down resources during keep-alive, which naturally
saves cost. In contrast, Azure appears to make no change
to CPU and memory allocation during keep-alive, which
may explain its shorter, opportunistic keep-alive period that
reflects a trade-off between resource use and cold start prob-
abilities. Cloudflare pre-warms functions on receiving the
TLS handshake before the connection establishment, which
can mask the very short loading and JIT compilation latency
(e.g., around 5ms) in case of cold starts [80].

The keep-alive duration and behaviors can directly affect
function performance and user costs. A longer keep-alive
period can help reduce user costs on platforms that charge
based on turnaround time, which includes the cold start la-
tency. Also, keeping resources and sandboxes active during
keep-alive (e.g., Azure and GCP) can enable the execution
of background tasks and increase the probability of reusing

long-lived, persistent connections. Deallocating resources
(e.g., AWS and Cloudflare) may cause remote servers to close
connections when they stop receiving heartbeat packets,
adding overhead and cost when connections must be re-
established. Furthermore, Azure maintains full resource allo-
cation during keep-alive, enabling user-created background
tasks to run outside the request execution window. Since
Azure Consumption is billed on memory consumption dur-
ing request execution, resource consumption during keep-
alive is not billed (although background tasks can still affect
billable wall-clock time and memory usage during request
executions due to resource contention) [118]. This may pro-
vide opportunities for users to exploit resource allocation.
For example, a short request can start a background task run-
ning in another thread or coroutine. The background task
can send results to other cloud services (e.g., block storage) or
remote endpoints after completion, or a subsequent request
can retrieve those results. We have successfully implemented
this execution pattern on Azure. By doing so, only one or
two brief requests are billed, which can substantially reduce
overall cloud costs.

4 Impact of OS Scheduling on Performance
and Cost

Serverless has a high degree of co-tenancy on servers com-
pared to traditional VMhosting environments [38, 96]. In this
environment, the OS kernel plays a crucial role in enforcing
resource isolation and fair allocation across workloads with
varying limits from different tenants. Common approaches
involve fairness-oriented schedulers (e.g., CFS and EEVDF)
and control groups (cgroups) for CPU bandwidth control
and resource isolation. We observe that when the execution
time of a function, the required CPU time, and the billing
granularity all fall within the same range as the OS timer tick,
scheduling can significantly impact performance and costs.
For the first time, we carefully characterize and understand
these effects on public serverless platforms.

4.1 Overallocation on Public Serverless Platforms
We deploy a single-threaded, compute-bound serverless func-
tion (PyAES from Functionbench [62]) on AWS Lambda un-
der memory sizes ranging from 128MB (minimum size) to
1,769MB, and on GCP (first generation is used due to its
support for fractional vCPU allocation) under CPU configu-
rations ranging from 0.08 (minimum size) to 1 vCPU. AWS
Lambda allocates vCPUs proportionately to the configured
memory size, with 1,769MB equivalent to 1 vCPU [89, 115],
while GCP provides a fine-grained CPU control knob with a
0.01 vCPUs increment [24]. Figure 10 shows the execution
duration reported by the serverless platform with 900,000
samples in total under different CPU configurations. We
make two main observations based on these real-world exe-
cution logs.
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Figure 10. Function execution durations and varying fractional CPU allocations. The difference between the ideal
(expected) and actual execution duration shows CPU overallocation for functions hosted on major serverless platforms. GCP
logs show two sets of quantization jumps, which may be the cause of CPU scaling down/up when entering/exiting keep-alive
phases (§3.3).

First, a single-threaded, CPU-bound workload like PyAES
with a fractional vCPU allocation should experience a slow-
down of 1

vCPUFraction that follows reciprocal scaling (i.e., half
the core allocation, double the execution time). However, the
empirical average (solid blue line) is consistently less than
the expected average duration (dashed red line) on AWS
and GCP (except for a few of the smallest vCPU allocations
on GCP). The expected average and expected 5th percentile
shown in the figure are based on measurements at full vCPU
allocation, scaled proportionally for smaller resource allo-
cations. In other words, a function can ask for, say, half the
resources, but be less than twice as slow. In cost terms, this
means that users may be charged less than expected un-
der the current wall-clock time billing models presented in
Equation (1).
Second, the average empirical execution duration does

not have a smooth, reciprocal decline with increasing re-
source allocations. Instead, it falls with sudden drops, which
become less frequent at higher resource allocations. These
sudden drops create considerable performance jitters. Also,
this means that the allocation-based component in the billing
model (i.e., 𝑅𝐴𝐿𝐿𝑂𝐶 in Equation (1)), also known as the ca-
pacity cost, can be reduced by choosing smaller resource
limits. We observed this pattern in other functions too, and
it is more pronounced with increased compute-boundness.
The performance patterns shown in Figure 10 give us

clues into what might be going on. Reducing the resource
allocation of the AWS Lambda function from 1 vCPU at first
does not affect the performance of the function, but sud-
denly there are increases at slightly above 1400MB, 700MB,
470MB, 350MB, 280MB, and so on. These follow a scaled
harmonic sequence: ~1400 × {1, 12 ,

1
3 ,

1
4 ,

1
5 , ...}. This discrete

1
𝑛
sequence suggests the presence of a quantization effect,

rather than the continuous proportional allocation ( 1
𝑥
) ini-

tially expected. Namely, the function is sometimes given
more than it is supposed to receive, since the underlying
CPU allocation units are quantized, causing jumps on the
performance curve. As an analogy, if you want 2 kg of sugar
and it is sold in 1 kg packs, the seller gives you two packs.
However, if you ask for 1.5 kg, the seller would still need
to give you 2 packs, leaving you with an extra 0.5 kg (i.e.,
overallocation). We observe the same quantization-based
overallocation on major serverless platforms.

4.2 Quantized OS Scheduling
By default, the Linux kernel leverages the Completely Fair
Scheduler (CFS) or the Earliest Eligible Virtual Deadline First
(EEVDF) scheduler (default scheduler since Linux kernel
6.8) to allocate resources in a fair or latency-sensitive man-
ner [39]. The scheduler generally provides each runnable
process with a baseline allocation of resources (e.g., CPU
time slice), ensuring that it receives at least one opportunity
to execute on the processor. It also incorporates mechanisms
like CPU Bandwidth Control [104] and cgroups [55] to im-
pose resource limits and provide resource isolation. Such
mechanisms have become the foundation of resource isola-
tion and allocation in the sandboxing solutions widely de-
ployed in serverless, such as containers [5, 70], microVMs [2],
and Wasm [99]. Our observations in §4.1 are the results
of the existing allocation slices in the OS scheduler and
cgroups, which seem to be coarse-grained for increasingly
short serverless functions, causing issues with cost fairness
and performance variability.

TheOSmaintains a kernel data structure (cfs_bandwidth)
for bandwidth control of each cgroup (task_group), which
includes information such as the enforcement period (CFS
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period), runtime quota (CFS quota) within each period, re-
maining runtime available for use (global runtime pool) pro-
tected by a spinlock, as well as the throttled run queue [58].
Note that the newer Linux kernels with the EEVDF sched-
uler use a similar interface and kernel data structure for CPU
bandwidth control as CFS. Therefore, the CFS period and
quota we discuss in this section also apply to kernels with
the EEVDF scheduler. For the rest of the section, we refer to
them as (CPU bandwidth control) period and quota.

A high-resolution timer (hrtimer) is registered with a call-
back [56] to refill the global pool with the quota once per pe-
riod. Each logical CPU core within the cgroup has a local pool
of available runtime for per-CPU-basis runtime accounting.
During runtime accounting (e.g., at scheduler ticks or con-
text switches), the consumed runtime is subtracted from the
local pool for processes running on a core within the cgroup.
When the local pool runs out of runtime, it attempts to ac-
quiremore (the smaller of sched_cfs_bandwidth_slice [54]
or remaining runtime) from the global pool. If both the global
and local pools are exhausted, processes on the core are throt-
tled and moved to the throttled run queue. When the global
pool is refilled to have available runtime in the new period
(hrtimer callback), the scheduler distributes runtime among
throttled run queues and unthrottles them (i.e., marks them
as eligible to be scheduled again). Under this schema, the wall
clock duration of a CPU-bound process can be calculated as:

𝑑 =


⌊
𝑇/𝑄

⌋
× 𝑃 +𝑇 mod 𝑄 if 𝑇 mod 𝑄 ≠ 0,( ⌊

𝑇/𝑄
⌋
− 1

)
× 𝑃 +𝑄 otherwise

(2)

Here, 𝑑 is the execution duration, 𝑇 is the required CPU
time, 𝑃 is the period, and 𝑄 is the quota. The scheduler tries
to limit the CPU utilization of tasks under CPU bandwidth
control to 𝑄/𝑃 . Figure 11 shows the execution durations de-
rived by Equation (2) for a CPU-bound workload with a CPU
time of 51.8ms (the average value3 in Huawei serverless
traces [51, 53]) under different periods from 5ms to 100ms
and the quotas mapped by varying fractional vCPU alloca-
tions. These periods are in the same scale compared to those
we found empirically (shown later in §4.3). With longer pe-
riods, the quantization effect becomes more pronounced. As
periods decrease, the execution duration converges to the
ideal execution duration following reciprocal scaling.
The model above does not account for the fact that the

runtime accounting and throttling mechanisms cannot op-
erate with infinite frequency or precision due to excessive
overhead (e.g., handling hrtimer interrupts [85]) in real-
world systems. Since the scheduling tick frequency is usu-
ally between 100 and 1,000Hz (CONFIG_HZ) [82, 86], runtime
accounting and task group throttling is often delayed, es-
pecially with the relatively long scheduler tick frequency
(e.g., 250Hz or less). Therefore, a task may often consume

3The requests that report zero CPU usage are excluded.
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Figure 11. Theoretical execution durations under frac-
tional CPU allocations. Shorter CPU bandwidth control
periods improve degradation proportionality for sub-core
allocations.

runtime more than the quota within a period (overrun) due
to lagged accounting, resulting in a negative runtime in the
local pool [105]. In this case, the task may be throttled for
one or more periods to wait for the quota refill and pay back
the runtime debt. For example, consider a CPU-bound task
within cgroup with 1.45ms quota over 20ms period (i.e.,
0.072 vCPU allocated to AWS Lambda with 128MB memory)
and tick interval of 4ms (250Hz). A possible scenario is that
it first gets 4ms CPU time and is throttled for 36ms (rest of
the first period and the whole second period) and becomes
eligible to run again in the third period (after 40ms). Then,
the task runs another 4ms after the quota is refilled, causing
overrun again with more debt, and is throttled for 56ms until
100ms and so on. This task repeatedly alternates between
running for 4ms and being throttled for long periods (i.e.,
36ms or 56ms) over multiple periods due to overrun and
lagged accounting.
Modern kernels often run with the tickless mechanism,

with less frequent scheduling interrupts under light loads [59,
100]. Also, scheduling decisions and runtime accounting do
not occur only at scheduler ticks. Events like voluntary con-
text switches or interrupts (e.g., hrtimer) can also trigger
accounting, rescheduling, or preemption. This can lead to
variations in runtime allocation and throttled duration. Over-
run issues marginally impact long tasks as the OS scheduler
ensures fairness over time, but can significantly affect short
tasks. However, a defining feature of serverless is the short
execution for the majority of requests [52, 53, 97]. Therefore,
even without the aforementioned overrun effect, CPU over-
allocation can still happen if a serverless workload is shorter
than the CPU bandwidth control enforcement period. For
example, a task that requires 10ms CPU time running within
a cgroup with a 20ms period of a 10ms quota is allowed to
consume 100% of the CPU during its brief execution, regard-
less of the configured limit of 0.5 vCPUs. For relatively long
tasks that span multiple periods, such overallocation can
still happen within the last period before the task is finished.
I/O-bound tasks are usually blocked, usually not using CPU
while waiting for I/O (e.g., epoll_wait()). However, when
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Algorithm 1 Profile Runtime and Throttle
1: 𝑠 ← 𝑔𝑒𝑡_𝑐𝑙𝑜𝑐𝑘_𝑚𝑜𝑛𝑜𝑡𝑜𝑛𝑖𝑐 () ⊲ Get monotonic clock time
2: 𝑛_𝑡ℎ𝑟𝑜𝑡 ← 0
3: 𝑇𝐻𝑅𝑂 ← [] ⊲ Array of tuples of throttle detected time and

throttle duration
4: 𝑙𝑎𝑠𝑡_𝑐ℎ𝑘𝑝𝑡 ← 𝑠

5: while 𝑡𝑟𝑢𝑒 do
6: 𝑛𝑜𝑤 ← 𝑔𝑒𝑡_𝑐𝑙𝑜𝑐𝑘_𝑚𝑜𝑛𝑜𝑡𝑜𝑛𝑖𝑐 ()
7: if 𝑛𝑜𝑤 − 𝑙𝑎𝑠𝑡_𝑐ℎ𝑘𝑝𝑡 ≥ 500𝜇𝑠 then
8: 𝑇𝐻𝑅𝑂 [𝑛_𝑡ℎ𝑟𝑜𝑡 + +] ← (𝑛𝑜𝑤,𝑛𝑜𝑤 − 𝑙𝑎𝑠𝑡_𝑐ℎ𝑘𝑝𝑡)
9: end if
10: 𝑙𝑎𝑠𝑡_𝑐ℎ𝑘𝑝𝑡 ← 𝑛𝑜𝑤

11: if 𝑛𝑜𝑤 − 𝑠 ≥ 𝐸𝑋𝐸𝐶_𝐷𝑈𝑅 then return 𝑇𝐻𝑅𝑂

12: end if
13: end while

the task resumes after data becomes available, overruns and
throttling across periods may occur, though this is less pro-
nounced as the task uses the CPU intermittently, consuming
less runtime and triggering fewer throttles. In a word, (I10)
current OS scheduling granularity seems to be coarse
in the context of serverless computing.

4.3 Scheduling Granularity of Serverless Platforms
The observations and discussions in §4.1 and §4.2 prompt us
to further investigate the OS scheduling settings of major
serverless platforms and their impact on performance and
cost. We analyze three major serverless providers, namely
AWS Lambda, GCP, and IBM. However, public serverless
providers abstract away infrastructure details and do not
expose the underlying scheduling mechanisms and parame-
ters [50, 76]. Therefore, we run functions on target platforms
to profile the scheduling behaviors and empirically peek at
their scheduling behaviors from the user space.
Methodology: Algorithm 1 presents the pseudocode of

the scheduler profile function, in which the function runs
for a predefined duration (EXEC_DUR) and records the time
and value of sudden increases (>500 𝜇𝑠) in monotonic clock
time (CLOCK_MONOTONIC) readings. The default minimal pre-
emption granularity for CPU-bound tasks in the kernel is
750 𝜇𝑠 [57], and such time jumps can effectively suggest the
occurrence of throttles. We invoke the function with differ-
ent vCPU configurations, each with 300 invocations. Each
function request runs for 10 s, leading to runtime/throttle
data collected over 3,000 s of execution span for each configu-
ration. Additionally, to be able to assess the effect of different
quotas, periods, and OS schedulers, we use in-house VMs,
each with 10 vCPUs (Intel Xeon E5-2673 v4), Linux kernel
6.2 (CFS) or 6.8 (EEVDF scheduler), and the timer frequency
of either 250Hz or 1,000Hz, to profile the function within
containers (runC runtime). We analyze the interval between
throttles, the throttle duration, and the consumed CPU time
before each throttle by calculating the differences between
consecutive events in the recorded data.

Serverless
Platform

Bandwidth Control Period
(cfs.cpu_period)

Scheduler Tick Freq
(CONFIG_HZ)

AWS Lambda 20ms 250
Google Cloud Run

Functions 100ms 1000

IBM Cloud Code
Engine Functions 10ms 250

Table 3. Scheduling parameters obtained by empirical analy-
sis (as of 2025-05-15), which vary across different providers.

Empirical Analysis: Figures 12(a) to (c) present the distri-
bution of throttle intervals, durations, and obtained CPU time
(runtime) of the studied settings. AWS Lambda functions
have throttle intervals that are multiples of 20ms, whereas
IBM functions show multiples of 10ms. The interval, dura-
tion, and runtime results closely align with local runs with
corresponding vCPU allocations, periods of 20ms (for AWS)
and 10ms (for IBM), and the timer frequency of 250Hz.
Also, the runtime and throttle duration of the AWS func-
tion (128MB, 0.072 vCPUs) and their distributions align with
the theoretical analysis discussed in § 4.2. The quantized
obtained CPU time of AWS Lambda suggests a coarse sched-
uling granularity under a lower timer frequency (i.e., 250Hz).
The overrun almost happens every time the task is scheduled.
Functions on IBM show similar quantized scheduling pat-
terns. The GCP functions exhibit throttle intervals of 100ms
in most cases, while they have 6.42% - 14.83% of throttle dura-
tions shorter than 2ms, indicating frequent context switches
and preemption events even within the CPU bandwidth con-
trol quota. Compared to other platforms, the less quantized
obtained CPU time (i.e., a smoother curve without distinct
step-like jumps as shown in Figure 12(b)-Mid) indicates finer-
grained time slice allocation under a higher timer frequency.
Table 3 presents the scheduling parameters obtained by our
empirical analysis, which suggest that public cloud providers
do not have a unanimous configuration.
Does the new EEVDF scheduler solve the overalloca-

tion issue? The EEVDF scheduler has replaced the CFS
scheduler in Linux kernel version 6.8, which introduces a
virtual deadline mechanism that improves system respon-
siveness by prioritizing latency-sensitive tasks with shorter
time slices [39, 101]. However, overrun issues still persist
under EEVDF because runtime accounting and scheduling
granularity remain tied to the timer frequency. As shown
in Figure 12(d), when using EEVDF with a 250Hz timer,
the CPU time obtained often exceeds the configured quota,
though it is slightly better than CFS with less overrun. Rais-
ing the timer frequency to 1000Hz significantly mitigates the
overrun issue. However, even with higher timer frequencies,
the fundamental overallocation problem still exists. When-
ever required CPU time falls below the quota, overallocation
cannot be avoided, regardless of scheduler or timer settings.

Implications: Overrun and overallocation are widespread
on public serverless platforms. However, providers can ab-
sorb this under-accounted resource usage through currently
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Note: The dashed and dotted lines are results of local runs with configurations that match the cloud profiling results most. The numbers following P and Q in
the legend stand for CPU bandwidth control period and quota in milliseconds. The legend also shows the scheduler and the timer frequency of local runs.

Figure 12. Distributions of throttle intervals, throttle durations, and obtained CPU times (runtime) under the
studied scheduling settings. We successfully match the local scheduling setting to cloud deployments. The scheduler
profiling results (figures (a), (b), and (c)) reveal that the scheduling settings and granularity vary across serverless platforms.

high invocation fees and coarse billing granularity (round-
ing up), as discussed in §2.5. For example, a GCP function
configured with 0.5 vCPUs and 512MB memory can poten-
tially consume 100% CPU within 50ms, but GCP will round
its billable wall-clock time up to 100ms plus a high invoca-
tion fee equivalent to 30.19ms. Also, we tested a user-side
exploit on AWS Lambda. We implement an intermittent exe-
cution framework and decompose a long function (the video-
processing application from SeBS [38]) into a sequence of
short bursts, each falling within the quota. We could reduce
billable memory GB-seconds by 66.7% on average (calcu-
lated over 100 data points). However, because AWS charges
a fixed invocation fee, our actual bill increased by 76.7%.
In other words, providers that plan to eliminate invocation
fees and coarse billing granularity should account for these
overallocation effects.
Besides billing, overallocation has clear performance im-

pacts as shown in Figure 10. Users can experience high jitters
when vCPU allocations are near quantization boundaries.
Existing function-rightsizing tools [42, 71, 78] are agnos-
tic to the quantization effect we described. However, they
should be able to capture this effect if equipped with fine-
grained, data-driven search. For the first time, we reveal the
interplay between scheduling, performance, and billing that
these frameworks implicitly use, potentially unlocking more
optimal rightsizing strategies.

One potential way to address overrun and overallocation
within the serverless computing context is to adopt an event-
driven quota enforcement mechanism instead of periodic
polling mechanisms based on periodic timers/ticks [103]. For
example, one-shot timers that expire upon a function pro-
cess exhausting its bandwidth control quota may be set to
trigger an immediate throttle and reschedule. Also, per-task
timers can be set to fire after a short, adaptive time (e.g.,
depending on the global bandwidth control period, over-
head tolerance, accuracy requirements, and predicted task
duration) to enforce more frequent and accurate CPU time
accounting for short-lived tasks with fractional vCPU allo-
cations. In addition, BPF programs can be attached to the
scheduler (e.g., through sched_ext [60]) to selectively apply
fine-grained quota enforcement to shorter functions that are
more susceptible to overallocation.

5 Discussions
Relative contributions of each cost-related component:
In this work, we chose not to quantify the relative contribu-
tion of each cost-related component since such numerical
breakdowns are highly dependent on context-specific fac-
tors. These factors include workload characteristics (e.g.,
traffic patterns, execution durations, and resource demands),
user configurations (e.g., concurrency settings, provisioned
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resources [90], and subscription plans [13]), and provider-
specific policies (e.g., ARMCPU and committed use discounts
and free tiers [83, 92]), which vary across applications and
providers. Therefore, any numerical breakdown would not
be broadly applicable. Instead, our approach decomposes the
inherent sources of cost inefficiencies and presents a system-
atic analysis framework across multiple abstraction layers
from user-facing billing models to OS scheduling, which en-
ables practitioners to measure and rank cost drivers within
their own context.
Actionables for serverless users: Our findings lead to sev-
eral actionable recommendations for reducing serverless
costs. First, users can conduct trace-based analysis to pick
an appropriate platform whose cost drivers, such as billing
practices (§2 and Table 1), concurrency modes (§3.1), serving
architectures (§3.2), keep-alive patterns (§3.3), and schedul-
ing granularity (§4.3 and Table 3), best match their workload.
Depending on the cost breakdown, users may consider merg-
ing similar functions to lower invocation fees, decomposing
functions to better utilize resources, or configuring always-
ready instances to avoid cold starts [14, 74, 90, 114]. Also,
users should be wary of serverless concurrency models and
tune control knobs for resources and scaling to avoid the dual
penalty of slowdowns and higher bills (§3.1). Furthermore,
it is a good practice to tune workload resource demands
and fractional vCPU allocations to avoid performance jitters
due to coarse OS scheduling granularity (i.e., quantization
jumps shown in Figure 10). Lastly, serverless users may also
consider the possibility of running background tasks during
keep-alive periods (§3.3 and Table 2).

6 Related Work
(1) External characterization of serverless systems: Nu-
merous studies characterized serverless systems from the
users’ perspective. Some investigated billing practices and
cost efficiency of serverless platforms [1, 14, 40, 44, 67, 73,
114]. However, none offered a holistic top-down analysis
like our study on how today’s serverless billing practices,
request patterns, architectural overheads, and OS scheduling
translate to inflated user costs. Other works performed cross-
platform characterizations of resource allocation patterns
and performance variations of serverless offerings [38, 62,
109, 111, 112, 114]. They did not capture some critical factors
that greatly impact serverless costs, such as concurrency
models, details of resource allocation during keep-alive, and
OS scheduling granularity. Moreover, some of their mea-
surements, such as default keep-alive durations and serving
architectures, are now outdated due to the rapid evolution
of serverless platforms.
(2) Characterization of production serverless workloads:
Several provider-led studies characterized serverless work-
loads running within their systems [52, 53, 75, 97, 108, 115].
These provided valuable insights and enabled the trace-based

analysis in parts of our study (e.g., quantifying inflated bill-
able resources). However, none of these studies delivers an
in-depth analysis that correlates the internal platform char-
acteristics (e.g., overheads of architectures and scheduler
settings) with the high costs experienced by serverless users.
Our work fills this gap by holistically analyzing billing mod-
els and practices and measuring architectural overheads and
OS scheduling effects, and connecting them to cost implica-
tions.
(3) Open-source serverless solutions, such as Knative [64],
AWS Runtime API [88], workerd [37], and Azure Functions
Host [9], enabled us to demystify overheads hidden in mod-
ern serverless serving infrastructures, which have not been
reported before.
(4) Serverless cost-efficiency optimization: There have
been recent studies that leverage dynamic or cooperative
scheduling [16, 46, 47, 81, 116], adaptive overcommitment [69,
102], and new billing models [73, 81] to improve the resource
utilization or cost-efficiency of serverless systems, effectively
reducing costs. These studies are orthogonal to our work,
which, for the first time, comprehensively characterizes the
interplay of various factors affecting performance and cost
in a top-down manner from user-facing billing models to
OS scheduling on major production serverless systems and
holistically demystifies the high costs of serverless.

7 Conclusion
For the first time, we holistically demystify the high cost of
serverless by conducting a comprehensive characterization
of driving factors in a top-down manner from user-facing
billing models, through architectural overheads, and finally
to OS scheduling.We provide novel insights into how current
billing practices, request serving architectures, keep-alive
resource allocation behaviors, and OS scheduling granularity
contribute to the inflated costs of serverless. These insights
spark future directions for serverless practitioners on opti-
mizing the cost-efficiency of serverless systems.
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