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ABSTRACT
Serverless computing has become a mainstream cloud com-
puting paradigm due to its high scalability, ease of server
management, and cost-effectiveness.With cloud data centers’
carbon footprint rising sharply, understanding and minimiz-
ing the carbon impact of serverless functions becomes crucial.
The unique characteristics of serverless functions, such as
event-driven invocation, pay-as-you-go billing model, short
execution duration, ephemeral runtime, and opaque underly-
ing infrastructure, pose challenges in effective carbon meter-
ing. In this paper, we argue that the current carbon estima-
tion methodologies should be expanded for more accurate
carbon accounting in serverless settings, and propose a us-
age and allocation-based carbon model that aligns with the
context of serverless computing. We also articulate how cur-
rent serverless systems and billing models do not make it
financially attractive to prioritize sustainability for a broad
class of users and developers. To solve this, we propose a new
carbon-aware pricing model and evaluate its ability to in-
centivize sustainable practices for developers through better
alignment of billing and carbon efficiency.

KEYWORDS
serverless computing, sustainability, carbon metering

1 INTRODUCTION
An increasing portion of greenhouse gas emissions in the
Information and Communication Technology (ICT) sector
is attributable to the data centers hosting cloud services
and resource-intensive workloads. The carbon footprint of
cloud data centers keeps increasing fast and is estimated
to account for over one-third of ICT carbon emissions by
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2030 [38, 57, 62]. Among the various cloud computing ser-
vices, serverless computing has grown to be a popular par-
adigm due to its performance and cost benefits and is an-
ticipated to dominate the future of cloud computing [4, 56].
Serverless applications can have a significant carbon foot-
print depending on configurations and underlying infrastruc-
ture [41, 64, 65]. Also, the increasing popularity of artificial
intelligence and serverless model serving will generally in-
crease the carbon footprint of serverless further [22, 44, 52].
Therefore, tackling the carbon footprint of serverless func-
tions is a critical step in addressing the sustainability chal-
lenge in current cloud systems. This paper aims to reveal the
gaps in the carbon observability of serverless functions and
propose solutions to bridge the sustainability gap in server-
less computing through enhanced carbon observability and
carbon-aware pricing.
Currently, serverless developers do not have access to

meaningful carbonmetrics due to the absence of fine-grained
observability frameworks. Tools available on public cloud
platforms, such as Customer Carbon Footprint Tool [8] and
Emissions Impact Dashboard [7], only provide coarse-grained
carbon metrics (e.g., per-region and per-service) with limited
observability. While recent studies and open-source projects
have proposed several models and tools to capture the car-
bon footprint of software systems [18, 36, 46], they are not
effective in capturing and modeling the carbon emissions of
serverless functions due to not considering unique serverless
characteristics such as event-driven invocation, pay-as-you-
go billing model, short execution duration, ephemeral run-
time sandbox, and opaque underlying infrastructure. Such a
gap hinders fine-grained carbon emission analysis on per-
function and per-request levels.
Offering meaningful incentives is key to driving sustain-

able practices across all sectors, including in cloud systems.
The primary incentive for providers is to reduce the carbon
footprint of their cloud services in response to the sustain-
ability target and regulations. Cloud providers, such as AWS
and Microsoft Azure, have already launched carbon reduc-
tion initiatives in recent years [6, 9]. Similarly, environmen-
tally conscious organizations are already on board as long
as they are provided with meaningful carbon observability
means [60]. However, current serverless systems and billing
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models do not make it financially attractive to prioritize sus-
tainability for a broad class of users and developers, whose
concerns are usually centered around performance. In this
context, this work’s primary contributions include:

(1) We identify unsustainable practices arising from the mis-
alignment between developer goals and sustainability
objectives in today’s serverless systems.

(2) To bridge the sustainability gap, we propose a carbon
model tailored for serverless and propose a feasible sys-
tem design for collecting carbon-related metrics and pro-
viding enhanced carbon observability.

(3) We evaluate our carbonmodel and the potential of carbon-
aware pricing through case studies, demonstrating its
effectiveness in incentivizing sustainable practices.

2 BACKGROUND AND THE STATUS QUO
Serverless resource allocation: Serverless functions

usually leverage lightweight virtualization and resource iso-
lation techniques, such as micro virtual machines (VMs) and
cgroups-based containers (or Kubernetes pods), to achieve
minimal performance overhead and enhanced scalability. De-
velopers typically only need to provide the function code or
container images. Serverless platforms handle operational
tasks, such as initialization, scaling, request routing, pre-
warming or keep-alive policies, and accounting. Serverless
platforms, includingmanaged services like AWS Lambda [31]
and open-source solutions like Knative [21] and Apache
OpenWhisk [25], have become widely adopted.

Observability in Serverless: Observability is the ability
to reason about the system status based on logs, traces, and
metrics. Many open-source projects like Grafana [72] have
focused on serverless observability for metrics/log collection
and analysis. While they are not directly designed for car-
bon observability, the metrics/logs and data pipelines can
be used to analyze carbon emissions. Several studies and
tools provide energy monitoring solutions for containers,
including Kepler [36], Scaphandre [18], SmartWatts [46], and
PowerAPI [40]. They retrieve power metrics from Running
Average Power Limit (RAPL) interfaces and use CPU and
memory usage metrics, along with power models, to esti-
mate the energy consumption of each process or container.
The focus of these tools on the energy consumption of long-
running applications makes them unfit for unique serverless
patterns, such as the short execution duration, event-driven
architecture, ephemeral container, and keep-alive policies
for cold start mitigation. They usually have a sampling rate
of up to 1Hz, while over 50% of functions have a duration
within a second, let alone the function’s ephemeral subpro-
cesses [54, 67]. Some works [18, 42] perform CPU accounting
based on jiffies that mismatch the function billing granular-
ity (1ms). Thus, they provide only coarse-grained energy

metrics that are not effective in tracing the carbon footprint
of individual function requests. Lack of fine-grained and low-
overhead energy/carbon metering leads to inaccurate carbon
accounting and limits usability for developers.
Power consumption and carbon footprint models:

The powermonitoring solutionsmentioned above [36, 40, 46]
and many existing power models [50, 51, 66] typically lever-
age a model to calculate the share of power that a monitored
application A should bear based on its resource usage, de-
noted as 𝑃A . It can be generally formulated as

𝑃A =
∑︁
𝑟 ∈𝑅

[
𝑃𝑟𝑠𝑡𝑎 ×𝐴𝑇𝑠𝑡𝑎 (𝑟,A) + 𝑃𝑟

𝑑𝑦𝑛
×𝐴𝑇𝑑𝑦𝑛 (𝑟,A)

]
(1)

where 𝑃𝑟𝑠𝑡𝑎 and 𝑃𝑟
𝑑𝑦𝑛

are the static (idle) and dynamic power
of the subsystem offering resource 𝑟 , and𝐴𝑇 defines the frac-
tion of power attributed to the application (e.g., ratio based
on usage). While this power model has been proven to be
accurate [50, 54], solely using power consumption models
fails to assess the holistic carbon footprint of serverless func-
tions. Embodied carbon and unique patterns in serverless
are important considerations [49, 58]. Existing long-running
metrics collection methods are often ill-suited for serverless
functions, again due to not being event-driven and due to
the mismatch of sampling rate and metering granularity.

Serverless billing model: One of the most attractive fea-
tures of serverless for developers is its pay-as-you-go billing
model with a billing granularity of as small as milliseconds,
minimizing idle costs. In its most general form, the cost is
determined by function execution duration 𝑑 , the allocated
resource size 𝐴𝐿𝐶 (e.g., memory size and ephemeral block
storage size) for serving the function request, the amount of
actual resource usage𝑈𝑆𝐺 of the request (e.g., data transfer
amount), and a fixed per-request cost 𝑐0. Formally, we can
define the cost 𝐶 of a request 𝑞 for serverless function 𝑓 as:

𝐶
𝑞

𝑓
=

∑︁
𝑟 ∈𝑅𝐴

𝐴𝐿𝐶 (𝑓 , 𝑞, 𝑟 ) × 𝑑 × c𝑟+
∑︁
𝑟 ∈𝑅𝑈

𝑈𝑆𝐺 (𝑞, 𝑟 ) × c′𝑟 + 𝑐0 (2)

Here, 𝑅𝐴 represents the set of allocation-billed resources,
c𝑟 is the cost per unit resource size and duration (e.g., GB-
second), 𝑅𝑈 is the set of usage-billed resources, and c′𝑟 is the
cost per unit of resource usage. For instance, AWS Lambda
charges $1.66667× 10−5 for every GB-second of the memory
allocation (with proportional CPU allocation), $3.09×10−8 for
every GB-second of the additional block storage allocation
beyond 512MB, and a fixed per-request fee of $2× 10−7 [32].
While pay-as-you-go billing enables cost-effectiveness,

the current serverless billing model fails to reflect a
function’s environmental impact in its cost. For instance,
consider a CPU-bound function and another with a long, non-
busy wait for remote database transactions to complete. If
both functions request identical resources (i.e., memory sizes
and #vCPUs) and happen to have similar durations, they
would cost the same. When it comes to carbon, however,
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Serverless Platform Billable Time Init Exec KA (Idle) Shut Reference
AWS Lambda [31] Execution Time ✗ ✓ ✗∗ / ✓1 ✗∗ / ✓4 [23, 32]

Google Cloud Functions [10] Turnaround Time ✓ ✓ ✗∗ / ✓2 ✗ [26, 28]
Google Cloud Run [11]

(Default Allocation Mode) Turnaround Time ✓ ✓ ✗∗ / ✓2 ✓ [15, 29]

Google Cloud Run [11]
(Always Allocated Mode) Instance Time ✓ ✓ ✓ ✓ [15, 29]

Azure Functions [5]
(Consumption Tier) Execution Time ✗ ✓ ✗ ✗ [27]

IBM Cloud Code Engine [19]
(Function Workloads) Turnaround Time ✓ ✓ ✗∗ / ✓3 ✗ [30, 35]

IBM Cloud Code Engine [19]
(Application Workloads) Instance Time ✓ ✓ ✓2,3 ✓ [14, 30]

∗Not billed under the default configuration. Users may customize the keep-alive (KA)
policy by configuring provisioned concurrency1 , minimum instances2 , or scale-down
delay3 and pay for idle resources. 4Billed for functions with AWS Lambda Extensions.

Table 1: The notion of billable time varies across dif-
ferent serverless platforms.

the latter would have lower emissions. This simple example
highlights a gap in the serverless billing model, which fails
to align the cost with the carbon emissions of functions.
An important factor influencing the cost of serverless

functions is which lifecycle stage is billed. This differs across
serverless platforms (Table 1). Besides execution duration, it
may involve various lifecycle stages (Figure 1), such as initial-
ization (cold start), shutdown, and keep-alive (KA) time for
cold start mitigation. Providers usually use a similar pricing
model as shown in Eq. (2), but with varying definitions for
billable time. Unlike AWS Lambda’s billing based solely on
function execution, Google Cloud Functions (GCF) charges
by default for the entire turnaround time, including resource
initialization after request arrival. In some other cases, a
cloud provider may use instance time for billing purposes,
which is the lifecycle duration of a function runtime instance
(e.g., pod), and may include the instance initialization time
after the request arrival, execution duration, keep-alive time,
and shutdown time (i.e., handling SIGTERM). Also, some
platforms may have minimum cutoff and round-up policies
for billable time; e.g., Azure Functions has a minimum billed
duration of 100ms [27], or GCF bills in 100 ms increments
by rounding up the duration to the nearest increment [28].

3 EXAMPLES OF UNSUSTAINABLE
PRACTICES IN SERVERLESS

As mentioned in §1, reasonable incentives can accelerate
sustainable practice adoption. Current serverless systems
and billing models often fail to make sustainability finan-
cially attractive for a broad class of users and developers
with concerns centered around performance. We dedicate
this section to identifying specific friction points between
developer goals and sustainability goals.
P1: Resource wastage due to inflexible allocation:

Serverless platforms can have inflexible resource allocation
options; e.g., AWS Lambda allocates CPU in proportion to the
memory size with a ratio of 0.000565 vCPUs/MB [13]. Inflex-
ible allocation forces developers to waste some resources to
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Figure 1: The lifecycle stages of the function runtime
sandbox (e.g., container) and the related carbon-based
cost discussed in case studies presented in §3 and §5.

feed the bottleneck resource [39]. For instance, they may allo-
cate more memory than necessary to achieve sufficient CPU
power for optimal performance and/or cost efficiency [63].
This over-allocation results in unnecessary emissions.

P2: Ignored memory access patterns: The last-level
cache misses can incur excessive memory accesses and car-
bon emissions for the memory subsystem [59, 61] and slow
down function execution. The carbon impact (not captured
in billing) of such misses is not necessarily proportional to
their performance impact (captured in billing).

P3:Minimumbilling cutoff and coarse-grained round-
ing: Serverless platformsmay have aminimum billing period
for function execution duration. For example, Azure Func-
tions enforces a minimum duration of 100ms in billing, while
around 25% of functions have a response time less than this
minimum billing period on average [27, 67]. GCF rounds
up function execution duration to the nearest multiple of
100ms [28]. Such billing policies discourage efficiency im-
provements for users who are not focused on latency gains.

P4: Default configuration combined with lack of car-
bon observability: Many studies have discussed that the
default function configurations are generally not cost and
performance optimal [13, 45, 63]. The same applies to carbon
optimality, as each function has specific resource require-
ments and usage patterns. While cost and performance are
readily logged for a developer to optimize for, carbon is not.
P5: Large code base: A large function code base with

many dependencies generally requires a longer time to ini-
tialize (i.e., cold start), during which resources are intensively
used, thereby causing higher carbon emissions. As cold start
latency may not be billed by the provider [23] and can be
mitigated by keep-alive and pre-warming policies [47, 67],
minimal software packages lack appeal for developers.
P6: Suboptimal lifetime management policy: Cloud

providers may have a fixed keep-alive policy for function
containers with varied allocated resources [2]. Carbon emis-
sions of idle containers and cold starts can serve as incentives
for cloud providers and users to devise optimal function con-
tainer lifecycle management policies.
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The responsibility for these unsustainable practices can
fall on providers, users, or both. It is the provider’s respon-
sibility to offer flexible resource allocation options (P1) and
fine-grained billing (P3). Since users have full control over
their source code and configurations, the onus is on them
in cases P2, P4, and P5. Providers bear primary responsibil-
ity for P6: they can use cold start mitigation strategies (e.g.,
pre-warming [67]) to strike a balance between the carbon
emissions of initialization and idle time. Meanwhile, users
also play a role for P6 due to their control over the code
base size and their ability to influence the keep-alive policy
through configuration (e.g., scale-down delay).

4 PROPOSED SOLUTION
The sustainability issues presented in §3 stem from the lim-
ited carbon observability and the lack of a carbon-aware
pricing model in current serverless computing systems. We
propose a solution to bridge this sustainability gap, aimed at
providing reasonable incentives for stakeholders and stimu-
lating effective sustainability actions in serverless computing.
Our proposal is centered around identifying critical metrics
for function carbon accounting (§4.1), developing a new car-
bon model for serverless functions (§4.2), and incorporating
relevant metrics and the carbon model in a carbon-aware
pricing model that better aligns cost and carbon (§4.4).

4.1 System Metrics Affecting Emissions
In serverless computing, a container (or K8s pod) is usually
the basic deployment unit, with resources allocated on a host
server. The metrics to measure the resource utilization of
function containers can be categorized into allocation-based
metrics and usage-based metrics, both of which are critical
for modeling the carbon footprint of serverless functions.
Allocation-based metrics reflect the amount of resources

allocated to functions. From the scheduling perspective, each
container has a resource request vector defining the amount
for each type of required resource, such as the number or
fraction of vCPU cores, memory size, block storage size,
reserved network capacity, and GPU memory size. The con-
tainer scheduler (e.g., kube-scheduler) places the function
container based on this vector and the available capacity on
suitable servers. Resources are dedicated once allocated and
cannot be used by other functions regardless of actual usage.
Therefore, allocation-based metrics generally contribute to
the static power and the embodied carbon of the function’s
host server. Reliable metrics are needed to map the resource
request vector to carbon emissions.
Usage-based metrics capture the actual utilization of re-

sources by functions, which are provided by hardware per-
formance counters or kernel features (e.g., Cgroups). The
actual resource usage typically determines dynamic power

and parts of embodied carbon, depending on the nature of
the device lifecycle. For example, providers may define SSD
replacement policies based on the wear from writing opera-
tions. The function’s actual I/O usage determines the share
of the storage subsystem embodied carbon it should bear in
this case. Relevant usage-based metrics for power estimation
can vary depending on the hardware platform and config-
urations. Key usage-based metrics in the latest literature
and tools [18, 36, 46, 50, 66] include CPU time, memory us-
age, CPU cycles, instruction count, #cache misses, and #I/O
operations and amount for the network and block storage.

4.2 Carbon Model Formulation
The carbon footprint of serverless functions consists of oper-
ational and embodied carbon. Operational carbon primarily
arises from power consumption and is influenced by the
data center power usage effectiveness (PUE) and the carbon
intensity (CI) of the used energy. It is crucial that the car-
bon model for serverless functions is meaningfully defined
on a per-request basis. A per-request carbon model aligns
with serverless’s pay-as-you-go billing and event-driven na-
ture, and effectively captures the variable emissions of input-
sensitive functions. For a function 𝑓 with a set of allocated
resources 𝑅 placed on server 𝑠 in data center 𝑙 , the carbon
footprint 𝐶𝐵 for serving the request (a.k.a. invocation) 𝑞 is:

𝐶𝐵
𝑞

𝑓
= 𝐶𝑂

𝑞

𝑓
+𝐶𝐸𝑞

𝑓
(3)

𝐶𝑂
𝑞

𝑓
and 𝐶𝐸𝑞

𝑓
are the operational and embodied carbon at-

tributed to the function request, with former calculated as

𝐶𝑂
𝑞

𝑓
=
∑︁
𝑟 ∈𝑅

∫ 𝜏+𝑑

𝜏

𝑃
𝑞

𝑓
(𝑟, 𝑡) × 𝑃𝑈𝐸 (𝑙, 𝑡) ×𝐶𝐼 (𝑙, 𝑡) 𝑑𝑡 (4)

where 𝜏 is the execution start time, 𝑑 is the duration. The
power attributed to function resource usage over time is

𝑃
𝑞

𝑓
(𝑟, 𝑡) = 𝑃𝑟𝑠𝑡𝑎 × 𝐴𝐿𝐶 (𝑓 , 𝑞, 𝑟 )

𝐶𝐴𝑃 (𝑠, 𝑟 ) + 𝑃𝑟
𝑑𝑦𝑛

(𝑡) × 𝑈𝑆𝐺 (𝑞, 𝑟, 𝑡)
𝑈𝑆𝐺 (𝑠, 𝑟, 𝑡) (5)

where 𝐴𝐿𝐶 (𝑓 , 𝑞, 𝑟 ) is the allocated size of resource 𝑟 to 𝑓

for serving request 𝑞, 𝐶𝐴𝑃 represents the total capacity of
resource 𝑟 on the host,𝑈𝑆𝐺 defines the usage amount of a
type of resource by the function request or the server over
time, and 𝑃𝑟𝑠𝑡𝑎 and 𝑃𝑟

𝑑𝑦𝑛
are the static and dynamic power of

the subsystem on the host server for resource 𝑟 .
We calculate the embodied carbon of a request as

𝐶𝐸
𝑞

𝑓
=
∑︁
𝑟 ∈𝑅

𝐶𝐸𝑟 ×
𝐴𝐿𝐶 (𝑓 , 𝑞, 𝑟 )
𝐶𝐴𝑃 (𝑠, 𝑟 ) × 𝑑 (6)

where𝐶𝐸𝑟 is the embodied carbon of the hardware associated
with the resource 𝑟 in per resource unit and duration. For
embodied carbon defined on a per-usage basis, the attribution
based on the multiplication of allocation ratio with duration
should be replaced with the amount of actual resource usage.
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Figure 2: The architecture of the proposed metrics col-
lection system and carbon observability framework.

The same formulation is applicable to model the carbon
footprint of the other function container life stages, such
as the initialization and the keep-alive phases. For instance,
the function is kept alive for a certain period, followed by a
warm start when it is invoked again within the keep-alive
window. Since few resources are used during the keep-alive
period (mainly memory), the carbon footprint at this phase
is dominated by the static power and the embodied carbon.

4.3 Metrics Collection
An efficient system to collect carbon-related metrics is es-
sential to assess the carbon footprint of serverless functions
accurately. Figure 2 demonstrates the proposed system archi-
tecture. The required components in the metrics collection
and observability framework are primarily based on open-
source projects and cloud-native tools, such as eBPF [16],
OpenTelemetry [24], and Grafana, ensuring system feasibility.
For accurate per-request carbon footprints, the architecture
targets serverless platforms with non-interleaving concur-
rency models. This is similar to the non-interleaving con-
currency models used in AWS Lambda [34] and the default
configuration of GCF [12]. This setup allows for differentiat-
ing carbon emission sources for each request and simplifies
event-driven metrics collection.

For power metrics, each server/node runs a collector that
fetches real-time power consumption metrics from the RAPL,
ACPI, or Redfish interface at regular intervals. For VM-based
nodes, energy metrics can be either passed through by the
hypervisor or derived from learning-based models to esti-
mate the static and dynamic power based on metrics [36].
The eBPF metrics collector periodically collects low-level,
usage-based metrics from hardware performance counters
for processes in each runtime sandbox, such as CPU cycles
and cache misses. It may also gather NUMA-aware metrics
(e.g., CPU time on each socket) if containers can run on dif-
ferent sockets [50]. The Cgroups collector runs as a sidecar
controlled by function middleware (HTTP handler) in an

event-driven manner. It gathers usage metrics like CPU time
and I/O volume from Cgroupfs at function execution start,
end, and periodically throughout. The resource allocation
metrics collector provides allocation-based metrics using the
function runtime orchestration framework (e.g., Kubernetes).

Besides metrics, prior work has shown that request traces
are essential for providing carbon footprints for applications
at a fine-grained request level [37]. We leverage the function
middleware and distributed tracing techniques (e.g., Open-
Telemetry) to keep a log of function execution, such as func-
tion invocation request ID, execution start time, and execu-
tion duration. With function execution logs, the usage-based
and allocation-based metrics obtained by various collectors
with different sampling rates can be linked to each individ-
ual function request, thereby enabling carbon modeling on
a per-request basis. The metrics and logs are pushed to the
observability platform (e.g., Grafana) and used to calculate
the carbon emission of individual function requests with the
carbon model discussed in §4.2.

4.4 Carbon-Aware Pricing
Leveraging pricing to enhance the efficiency of cloud sys-
tems is not new [68]. Recent studies have highlighted the
need for pricing models that can effectively translates car-
bon emissions into cost [48, 69]. However, to the best of our
knowledge, carbon-aware pricing in the context of server-
less to incentivize adoption of sustainable practices has not
been proposed before. Possible approaches may include 1)
a straightforward pricing model that charges users per unit
of carbon emission, 2) a tiered pricing model with different
pricing tiers based on emission levels, and 3) a mixed pricing
model that combines the current billing model (Eq. (2)) at a
reduced rate and a carbon tax surcharge based on emissions.
Instead of proposing an exact carbon-based pricing model,
we argue that serverless providers need to explore carbon-
aware pricing policies that fit their specific operational and
financial contexts (e.g., cloud infrastructure and revenue
models) and sustainability objectives. In practice, functions
may be billed on historical average values of carbon elements
(e.g., PUE and CI) to ensure pricing consistency or dynamic
values that reflect the real-time carbon to incentivize tempo-
ral and spatial workload shifting [70]. In §5, we show that
even a basic proportional pricing model has the potential to
disincentivize unsustainable practices in serverless.

5 EVALUATION THROUGH CASE STUDIES
To validate the incentives provided by the carbon model and
carbon-aware billing, we conduct case studies to estimate
the cost of serverless functions with unsustainable practices
discussed in §3 and the corresponding sustainable practices.
We use a learning-based power model from the Kepler Model
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Unsustainable Practice Sustainable Practice Current Cost Ratio∗
Sustainable/Unsus

Proposed Carbon Cost Ratio
Sustainable/Unsus Notes on Specific Scenario∗∗

P1 Configure 3,538MB to get 2 vCPUs Configure 512MB of memory and 2 vCPUs N/A1

(Rigid Configuration) 0.980 Workload CPU time 200ms

P2 Ignore memory access patterns Improve cache behaviors to reduce cache misses by 20%;
CPU time is reduced by 1ms 0.9891 0.863 Workload CPU time 20ms;

0.25 vCPUs, Memory 443MB

P3 Minimum billing cutoff Improve function performance by reducing CPU time by 2ms 1.0002 0.821 Total CPU time 25ms;
0.167 vCPUs, Memory 256MB

P4 Default configuration Increase memory size from 128MB to 512MB 0.9701 0.305 Workload CPU time 20ms

P5 Large code base Shrink code base and reduce the initialization CPU time by 20%;
The original initialization CPU time is 30ms 1.0002 0.954 Workload CPU time is 100ms;

0.167 vCPUs, Memory 256MB

P6
Additional cold starts due to fixed

container lifetime management policy
not suitable for the invocation pattern

Adjust the 10-second keep-alive window
size to 11 seconds to eliminate cold starts 1.0423 0.962

Workload CPU time 1,000ms;
Initialization CPU time 100ms;
0.25 vCPUs, Memory 1GB;

2 reqs with 15 s inter-arrival time
∗Billing model used: AWS Lambda1 , Google Cloud Functions2 , and IBM Cloud Code Engine (function workloads) with keep-alive3 . ∗∗CPU time is the actual amount of time taken by
a CPU core to execute the function, which can be shorter than the wall-clock execution duration due to fractional CPU allocations. For example, the execution duration of a function
that requires 20ms of CPU time for the workload is around 65ms with 0.25 vCPUs and a 20ms cgroup period.

Table 2: The ratio of costs of serverless functions with sustainable and unsustainable practices under the current
serverless billing model and the carbon-aware billing policy.

DB [33] to estimate the power usage of CPU and DRAM com-
ponents in AWS bare metal instances (i.e., i3.metal) [20]. The
model is trained on power and usage-based metrics collected
from RAPL and eBPF with mean absolute percentage errors
of 1.0% and 4.1% for static and dynamic power estimations.
For the embodied carbon, we refer to the average values for
SSDs, CPUs, and memory reported in recent studies [1, 71].
We adopt the embodied carbon of 652.78 gCO2 for a CPU core
and 1.39 and 0.11 KgCO2/GB for the memory and SSDs and a
standard operational lifespan of five years. We use a PUE of
1.11, the average of the 1.07-1.15 range reported for AWS dat-
acenters [3], and CI of 42 gCO2/kWh for the datacenter [17].
Besides, we adopted an average server CPU utilization of
45% [43], an average last-level cache miss rate of 5 per 1,000
cycles [53], and an average cycle per instruction of 1.58 [55].

We aim to compare a pricing model that charges per unit
of carbon emission to existing billing models of public server-
less platforms. To do so, we simulate functions with specific
resource allocation (i.e., vCPUs and memory) and the CPU
time required to execute the function for each scenario. Ta-
ble 2 presents the comparison between the ratios of costs
of serverless functions with sustainable practices discussed
in §3 over those with unsustainable practices, under both
current billing models (Eq. (2)) and the carbon-aware billing
policy. Figure 1 illustrates the carbon emissions for different
runtime stages considered in each case study.
As shown in Table 2, the cost ratios under the carbon-

aware billing model are consistently lower than those based
on current billing models (if applicable). For instance, in
P2, improving cache behaviors translates into a 1.1% cost
reduction under the current billing model. In contrast, the
cost reduction is 13.7% with the carbon-aware billing. This
generally demonstrates that the carbon-aware billing policy
is more sensitive to carbon efficiency improvements. Also,
carbon-aware pricing can effectively reflect carbon reduction
and guide relevant optimization decisions for providers and

users. In P6, the carbon-based billing incentivizes addressing
suboptimal keep-alive configurations that can cause more
cold starts. Conversely, the current billing model may dis-
courage this optimization decision. Such results demonstrate
the potentials of the proposed carbon model and the carbon-
aware pricing policy in offering incentives for the adoption
of sustainable practices in serverless computing.

6 CONCLUSION AND VISION
The unique operational and architectural characteristics of
serverless systems present challenges to achieving carbon
observability and, ultimately, sustainability. Broad adoption
of sustainable practices by users requires incentives, which
are currently constrained by the limited carbon observability
and the carbon-agnostic billing model.
In this paper, we proposed carbon models and a metrics

collection system tailored for sustainable serverless comput-
ing. Our fine-grained carbon observability framework aims
to deliver per-request carbon footprint metrics with minimal
overhead and complexity, seamlessly integrating with exist-
ing cloud-native serverless systems. We also argued that it is
valuable to design carbon-aware pricing models that trans-
late carbon into cost with pricing consistency and incentivize
sustainable practices for both providers and developers. By
identifying and simulating the impact of carbon emission on
specific unsustainable user/provider behaviors, we showed
how enhanced carbon observability and carbon-aware pric-
ing bridge the sustainability gap in future serverless systems.
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