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Abstract
As the carbon footprint of cloud data centers grows rapidly, sustain-
ability has become an increasing concern for practitioners. Under-
standing the carbon emissions of cloud workloads and identifying
strategies to reduce them is critical. In this paper, we model and
extensively analyze the carbon emissions of functions executed
on a public serverless platform using available telemetry, offering
new insights into the relationship between carbon emissions and
traditional metrics of cost and performance. We explore various fac-
tors affecting carbon emissions, including host region, architecture,
cold starts, application resource composition, and input-sensitivity.
Based on our findings, we propose future optimization opportuni-
ties and research directions. Our work aims to empower developers
to make more sustainable decisions when configuring or optimizing
their applications.

CCS Concepts
• Social and professional topics→ Sustainability; • Software
and its engineering→ Cloud computing.
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1 Introduction
Cloud data centers have emerged as significant contributors to
global greenhouse gas (GHG) emissions within the Information and
Communication Technology (ICT) sector [22]. The serverless com-
puting model, which has gained significant traction over the past
few years, offers potential environmental benefits through dynamic
resource allocation, enabled by autoscaling of function or applica-
tion sandboxes (e.g., containers, pods). Minimizing idle resource
waste helps reduce carbon emissions. This capability is particu-
larly critical given that most real-world applications experience
fluctuating traffic patterns. However, the environmental efficacy
of this paradigm remains contingent upon the efficiency of the
building blocks of scaling, i.e., how each sandbox is configured.
Prior research has demonstrated that suboptimal configuration of
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serverless functions can incur substantial operational costs and per-
formance degradation [34, 49, 55], suggesting a probable correlation
with increased carbon footprints. Consequently, the sustainabil-
ity benefits of serverless computing hinge on understanding and
optimizing for efficient sandbox configurations.

Understanding the key factors driving carbon emissions in server-
less computing is critical for empowering developers to priori-
tize sustainability and optimize their applications. While cloud
providers have introduced initiatives to reduce data center emis-
sions, these efforts often remain disconnected from the configura-
tion decisions developers must make. This raises a pivotal question:
Are developers equipped with the necessary insights to make in-
formed, carbon-aware decisions? Three primary barriers currently
hinder their ability to do so. First, within virtualized serverless
sandboxes, developers lack access to granular infrastructure-level
energy metrics provided by hardware interfaces such as Intel RAPL.
This leaves them blind to the direct environmental impact of their
code. Second, without visibility into co-located workloads on shared
servers, they cannot accurately attribute static power consumption
in multi-tenant environments [50, 65]. Finally, the emissions data
provided to developers by providers arrives via coarse-grained re-
ports at the end of billing cycles [19, 27, 28, 61]—far too late to
inform real-time optimizations. These limitations underscore a gap
between sustainability goals and actionable developer tools, stifling
progress toward greener serverless architectures.

The goal of this study is to investigate how fine-grained teleme-
try accessible to developers combined with published power and
carbon models can reveal opportunities to improve the carbon effi-
ciency of serverless functions through configuration adjustments.
Departing from prior methodologies that rely on controlled local
hardware environments [65] or bare-metal instances with fixed re-
source profiles [58], we instead explore what actionable insights can
be derived solely from existing serverless logs and metrics available
to developers. By narrowing our carbon estimation scope to the
execution phase of serverless functions—the portion developers are
directly charged for and can influence through optimizations—we
examine how well the existing pricing models incentivize emission
reduction efforts by developers. While this approach cannot elimi-
nate the need for providers to implement high-quality, real-time
carbon APIs, it nevertheless establishes a framework to harmonize
current cost-driven optimization practices with sustainability objec-
tives. With this goal, this paper makes the following contributions:
• We build operational and embodied carbon models for functions
executed on AWS Lambda, a popular serverless platform.

• We show which readily-available metrics from AWS CloudWatch
Lambda Insights can be used to feed these carbon models.

• We characterize various sources of emissions and compare carbon
emissions to classic metrics such as performance and cost.
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• Building on our characterization results, we highlight several
challenges and propose future research directions.

2 Carbon Model
This section explains the fundamental concepts of carbon emissions
in cloud systems and outlines our approach to modeling its various
components for serverless functions.

2.1 Basics
TheGreenhouseGas Protocol (GHGprotocol) [9] is awidely adopted
framework for carbon footprint assessment. Under the GHG pro-
tocol, the carbon emission of cloud data centers stems from direct
emission (Scope 1), purchased energy (Scope 2), and carbon em-
bodied in hardware and infrastructure (Scope 3) [51]. Scopes 1 and
2 generally involve the operational carbon of data centers, while
the direct emission (e.g., on-site power generators and employees)
from the data center is usually negligible [3]. The Scope 2 carbon
can be modeled based on the energy consumption, power usage
effectiveness (PUE) of the data center, and the carbon intensity
of the underlying power grid. Scope 3 emission mainly includes
the embodied carbon associated with hardware and infrastructure
manufacturing, transportation, maintenance, and replacement, as
well as the hardware life cycle policy.

The total carbon footprint of serverless functions consists of
operational (𝐶𝑜𝑝 ) and embodied carbon (𝐶𝑒𝑚).

𝐶𝑡𝑜𝑡𝑎𝑙 = 𝐶𝑜𝑝 +𝐶𝑒𝑚 (1)

Operational carbon refers to the carbon emissions generated from
the energy consumed during the execution of serverless functions.
This includes the energy required to power the resources allocated
to the function during its execution. Embodied carbon is deter-
mined by the emissions associated with the hardware on which an
application runs. As discussed in §2.3, it accounts for the carbon
emissions from manufacturing, transportation, installation, mainte-
nance, and disposal of the resources. This evaluation considers life
cycle analysis (LCA) from the production to disposal of devices used
in cloud infrastructure. Serverless functions contribute to embodied
carbon proportional to the hardware capacity they use. Consider-
ation of embodied carbon as one of the primary differentiating
factors for carbon vs. energy optimization. Prior work has demon-
strated that optimizing for carbon is different from optimizing for
energy [68, 76].

In many serverless systems, developers control function con-
figurations (to various degrees). For example, in AWS Lambda,
developers set memory configurations of functions and CPU is
allocated proportionally [7]. Since we study AWS Lambda in this
paper, we adhere to the same resource allocation model and ac-
count for carbon emissions from both allocated and used resources.
Throughout the rest of the paper, we denote the function’s memory
configuration as𝑚. At 1,769MB of memory, there is exactly one
vCPU allocated to the Lambda function [7].

2.2 Modeling Operational Carbon
The operational carbon is influenced by 1) the energy efficiency
of the data center, a.k.a. power usage effectiveness (PUE), 2) the
carbon intensity of the electrical grid (𝐼𝑔𝑟𝑖𝑑 ) [70], and 3) the energy

CPU Vendor,
Arch., and Freq.

CPU Model
(Inferred)

Occurrence
Frequency

Idle
Power (W)∗

Active
Power (W)∗∗ Ref.

Intel Haswell 2.50 GHz Xeon E5-2680 v3 83.17% 44 125 [1, 10]
Intel Haswell 2.90 GHz Xeon E5-2666 v31 5.84% 322 135 [1, 14]
Intel Haswell 3.00 GHz Xeon E5-1660 v3 10.40% 34 140 [1, 10]
AMD EPYC 2.65GHz EPYC 7R131 0.59% 823 225 [13, 66]

∗The C1E-state power specification is used for the idle power of Intel CPUs. ∗∗TDP power is used.
1The server CPU is the OEM version with limited datasheet information. The box version of the

CPU (i.e., Intel Xeon E5-2667 v32 and AMD EPYC 76433) with a comparable number of cores, base

frequency, and TDP is used to estimate idle power.

Table 1: TheCPUmodels for serving function requests, preva-
lence in percentages, and their energy metrics.

consumed by the resources used during execution. The previous
work [67, 72] indicates that the main contributors to the system’s
energy are the memory, CPU, network, and storage resources.

𝐶𝑜𝑝 = (𝐸𝑚𝑒𝑚 + 𝐸𝑐𝑝𝑢 + 𝐸𝑛𝑒𝑡𝑤𝑜𝑟𝑘 + 𝐸𝑠𝑡𝑜𝑟𝑎𝑔𝑒 ) × 𝑃𝑈𝐸 × 𝐼𝑔𝑟𝑖𝑑 (2)

2.2.1 Memory. The energy usage of memory is influenced by both
its active power (𝑃ℎ𝑖𝑔ℎ𝑚𝑒𝑚) and the idle power (𝑃𝑙𝑜𝑤𝑚𝑒𝑚) consumption
throughout the execution period.

𝑃𝑚𝑒𝑚 = 𝑃
ℎ𝑖𝑔ℎ
𝑚𝑒𝑚 ×𝑚𝑢𝑠𝑒𝑑 + 𝑃𝑙𝑜𝑤𝑚𝑒𝑚 × (𝑚𝑎𝑙𝑙𝑜𝑐 −𝑚𝑢𝑠𝑒𝑑 ) (3)

We take the average of the memory power consumption figures
collected for idle and active memory in AWS [35]; 3.26e-4 kW/GB
and 8.38e-4 kW/GB for 𝑃𝑙𝑜𝑤𝑚𝑒𝑚 and 𝑃ℎ𝑖𝑔ℎ𝑚𝑒𝑚 , respectively. Multiplying
the power by the duration of function execution results in the total
energy consumed.

2.2.2 CPU. The CPU energy consumption, denoted as 𝐸cpu, is
determined by the number of allocated CPU cores 𝑛𝑐𝑝𝑢 , average
per-core CPU power 𝑃𝑐𝑝𝑢 , and function execution duration 𝑑 :

𝐸𝑐𝑝𝑢 = 𝑃𝑐𝑝𝑢 × 𝑛𝑐𝑝𝑢 × 𝑑, (4)

where 𝑃𝑐𝑝𝑢 can be derived from a linear utilization-based power
model [31] that is formulated as

𝑃𝑐𝑝𝑢 = 𝑃𝑖𝑑𝑙𝑒𝑐𝑝𝑢 + 𝑢 ×
(
𝑃𝑎𝑐𝑡𝑐𝑝𝑢 − 𝑃𝑖𝑑𝑙𝑒𝑐𝑝𝑢

)
(5)

Here, 𝑢 is the average CPU utilization rate throughout function
execution (i.e., the ratio of the CPU time consumed by the function
to the product of 𝑑 and the total number of CPU cores), 𝑃𝑖𝑑𝑙𝑒𝑐𝑝𝑢 is
the idle (baseline) CPU power, and 𝑃𝑎𝑐𝑡𝑐𝑝𝑢 is the active CPU power
under full utilization. In order to obtain the CPU power metrics
(i.e., idle and active power), we read the CPU information from
/proc/cpuinfo. We inferred the CPUmodel based on the CPU ven-
dor, microarchitecture, and frequency reported by cpuinfo, AWS
documentation [4, 5], and CPU specifications [10] and gathered
power metrics from CPU datasheets and research report [1, 66]. Ta-
ble 1 presents the reported CPU information, inferred CPU models,
frequency of occurrence (out of 2,020 function invocations), and
their corresponding power metrics.

2.2.3 Network. The energy needed for data transmission to and
from Lambda functions can be estimated by considering the amount
of data being transferred (S). There is a great deal of uncertainty in
the existing network energy models [20, 23, 52]. We use the 𝐸𝑡𝑟𝑎𝑛𝑠
of 0.001 kWh/GB in this paper, which appears to be on the lower
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end of estimates for 2024 [37]. The energy consumption associated
with the transmission of 𝑆 gigabytes of data is calculated as

𝐸𝑛𝑒𝑡𝑤𝑜𝑟𝑘 = 𝐸𝑡𝑟𝑎𝑛𝑠 × 𝑆 (6)

2.2.4 Storage. The /tmp file system in AWS Lambda offers 512MB
of ephemeral storage attached to each function, by default (exten-
sible up to 10GB). Solid state drives (SSDs) are more commonly
used in cloud system data centers than traditional hard disk drives
(HDDs) [48, 71]. We use 1.2e-3W/GB as the unit power consump-
tion for SSD servers [70]. Multiplying the baseline power (𝑃𝑠𝑠𝑑 ) for
SSDs by the amount of data stored (D) over execution time 𝑑 yields
the total energy consumption attributed to ephemeral data storage.

𝐸𝑠𝑡𝑜𝑟𝑎𝑔𝑒 = 𝑃𝑠𝑠𝑑 × 𝑑 × 𝐷 (7)

We exclude the carbon impact of external storage (e.g., attached
volumes and S3 buckets) since their cost and emissions are sepa-
rately measured and reported by the respective storage services
(e.g., Amazon S3 and EBS).

2.2.5 PUE. We use a power usage effectiveness (PUE) of 1.11,
which represents the average value within the range of 1.07 to
1.15 as reported by AWS [18].

2.2.6 Carbon Intensity. Carbon intensity can vary over time, daily
or seasonally. In this paper, we use the average carbon intensity
values from 2024 reported from electric grids hosting four public
AWS regions in North America. We use historical datasets provided
by the Electricity Maps [53] for this purpose. The selected regions
demonstrate a spectrum of carbon intensity levels. The us-east-1 re-
gion had the highest annual average is with 392 gCO2e/kWh, while
ca-central-1 records the lowest at 35 gCO2e/kWh. Additionally, us-
west-1 and us-west-2 report carbon intensities at 272 gCO2eq/kWh
and 195 gCO2e/kWh, respectively. The reader should note that the
actual carbon intensity of data centers may vary, as data centers
may have energy storage [15], thermal energy harvesting [77], etc.
These do not affect the trends reported in this work, however.

2.3 Modeling Embodied Carbon
The embodied carbon attributed to the function execution is mainly
determined by the allocated computing resources (e.g., vCPUs and
memory size) and the embodied carbon of the hardware providing
the resource [50]. For a given serverless function 𝑓 with a set of
allocated resources 𝑅, we can formulate the embodied carbon as

𝐶𝑒𝑚 =
∑︁
𝑟 ∈𝑅

𝑐𝑒𝑚 (𝑟 ) × 𝑑 × 𝐴𝐿𝐶 (𝑓 , 𝑟 ), (8)

where 𝑐𝑒𝑚 (𝑟 ) is the per-unit-and-duration lifetime embodied car-
bon of the hardware associated with the resource 𝑟 ,𝑑 is the function
execution duration, and 𝐴𝐿𝐶 (𝑓 , 𝑟 ) is the allocated size of resource
𝑟 to 𝑓 .

We consider a server lifespan of six years, as reported by AWS
in February 2024 [6]. We leverage Datavizta [8], a publicly avail-
able tool for assessing ICT/digital environmental impacts, to ob-
tain the embodied carbon of CPUs and memory. The per-vCPU
embodied carbon of the four CPU models listed from top to bot-
tom in Table 1 are 825 gCO2eq, 860 gCO2eq, 1115.63 gCO2eq, and
312.5 gCO2eq, respectively. The per-GB embodied carbon of mem-
ory is 1796.88 gCO2eq. We adopt the per-GB embodied carbon of
160 gCO2eq for storage [69]. For example, the storage embodied

carbon of a function with 1GB of storage and execution duration
of 1 s can be calculated as

𝐶
𝑠𝑡𝑜𝑟𝑎𝑔𝑒
𝑒𝑚 =

160𝑔𝐶𝑂2𝑒𝑞/𝐺𝐵

6 × 365 × 86400𝑠
× 1𝑠 × 1𝐺𝐵 = 8.46 × 10−7𝑔𝐶𝑂2𝑒𝑞

To the best of our knowledge, there is no available data on the
embodied carbon associated with network data transfer. So, we do
not consider the embodied carbon of the network in our analysis.

The embodied carbon model we used mainly focuses on the
manufacturing carbon associated with main components such as
CPU, memory, and storage, with the scope limited to serverless
functions. These components are externally measurable. Our model
excludes broader embodied carbon factors, such as manufacturing
carbon for other devices (e.g., motherboards and power supply
units), transportation of components, building construction, and
alike. Therefore, the embodied carbon considered in this work is
essentially a lower-bound.

3 Characterization Results
3.1 Methodology
All experiments were conducted on AWS Lambda, one of the most
popular public serverless platforms. The us-west-1 (California) re-
gion was primarily used in our studies. The host region can affect
our results in two ways: 1) the mix of the underlying hardware,
which we control for as described in §3.4.2, and 2) the electric grid’s
carbon intensity, which we use average regional statistics in §2.2.6.

3.1.1 Metric collection. Weusemetrics reported by the AWSCloud-
Watch Lambda Insights [11], a dedicated service for monitoring
serverless applications, to feed our carbon models presented in
§2. Specifically, we use the following metrics: duration for func-
tion execution time, cpu_total_time as the sum of time spent
in user and kernel modes, used_memory_max to track maximum
memory utilized, total_network to capture data transmitted, and
tmp_used to account for how much of the temporary file system
was used. For functions that did not involve network-intensive
operations, we still observed some data transfer values from AWS
Lambda Insights, which can be attributed to network calls made by
the Lambda runtime [11]. To address this variability, we calculated
the average of the collected network data. We had to trace the CPU
information from the function side by accessing /proc/cpuinfo.
We distinguished between cold starts and warm starts by reading
the field cold_start from AWS Lambda Insights logs.

3.1.2 Benchmarks. We analyze invocation logs from five different
benchmarks developed in Python, JavaScript, and Java, which are
the primary languages used by AWS Lambda users [30]. PyAES [45],
a Python-based AWS Lambda function utilizing the AES (Advanced
Encryption Standard) algorithm to secure data, and Markdown-to-
HTML [62], a Python script that transforms Markdown into HTML.
These benchmarks need a reasonable level of computing power
and do not involve any external communication. To accommodate
various energy sources, such as those derived from CPU or I/O oper-
ations, we have chosen specific benchmarks: Video-Processing [29],
a Python script used for adding watermarks to videos and convert-
ing them to GIFs, and Java-S3 [21], a Java application designed to
retrieve, compress, and store images in an S3 bucket. To analyze the
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Figure 1: Operational and embodied carbon of five bench-
mark functions under different memory sizes. The lines rep-
resent the average carbon emissions.

behavior of functions under very low memory allocations, we se-
lected Formplug [42], an HTML form forwarding service developed
in JavaScript.

We initiated the benchmarks using specific input values and
subsequently altered the inputs for each benchmark to test input
sensitivity in §3.4.3. Both the Video-Processing and Java-S3 func-
tions processed 1MB of video and image from an S3 bucket, re-
spectively. PyAES encrypted a message of 256 characters 100 times,
while the Markdown-to-Html benchmark generated an HTML web
form from a Markdown text of 165k characters.

3.1.3 Sampling. The logs were collected at a sampling rate of
20MB, spanning memory sizes from 128MB to 3,008MB. This sam-
pling rate was implemented across all benchmarks except for Video-
Processing, which demonstrated better performance at 500MB of
memory. Each memory configuration was sampled three times,
excluding cold starts. Cold starts are analyzed separately in §3.4.1.

3.2 Carbon Attribution
In this section, we explore the attribution of carbon emissions with
various criteria. We base our analysis on the execution logs with
the Intel Haswell 2.50GHz CPU, since it is the predominant CPU
model as presented in Table 1. Also, we further discuss the impact
of different CPU models in §3.4.2.

3.2.1 Operational and Embodied Carbon. Figure 1 illustrates the
operational (left) and embodied (right) carbon emissions of five
benchmark functions deployed in the us-west-1 region. As the fig-
ure shows, carbon emissions vary with memory configurations
for these benchmarks. Emissions do not necessarily increase with
higher configurations; for most benchmarks, the emission functions
are convex rather than monotonically increasing. This occurs be-
cause, up to a certain point, increasing memory—and subsequently
CPU allocation—can reduce execution time when a function is
resource-bottlenecked. Beyond the threshold where all necessary
resources are provided, extra resources only become wasteful.

The other observation is that across benchmarks, operational
and embodied emissions do not change with the same ratio. For
instance, Java-S3 consistently has more than twice the operational
emissions of PyAES, while their embodied emissions are relatively
close. This has to do with the varying mix of resources used by
different functions, something we characterize in §3.2.2.

The operational carbon is influenced by the carbon intensity of
the grid powering the host data center (§2.2.6). Execution on iden-
tical hardware in other regions would linearly scale the emissions
shown in Figure 1-Left, proportional to the ratio of the region’s
carbon intensity to that of us-west-1. This relationship highlights
how regional variations in energy sourcing—not just workload
configuration—impact sustainability outcomes; something recently
explored by researchers to reduce emissions of serverless work-
loads [37, 60].

3.2.2 Contribution by Resources. Figure 2 shows the breakdown
of operational emissions by resource. For three functions, most
of the carbon emissions come from the CPU. For Java-S3 and
Video-Processing benchmarks, the network energy is the dom-
inant contributor to the emissions. As noted earlier in §1, this
paper specifically focuses on emissions generated during the ac-
tive execution phase of serverless functions—a scope aligned with
serverless billing models. Keeping sandboxes alive to mitigate cold
starts [58, 63] extends memory emissions shown in this figure, but
that carbon footprint falls under the provider’s operational respon-
sibility.

3.3 Carbon vs. Classic Metrics
3.3.1 Carbon vs. Cost. To explore the relationship between carbon
emissions and cost, we calculate the cost of each invocation using
the AWS pricing model [17] (excluding the free-tier discounts). We
then compare the costs with the corresponding carbon emissions.
Figure 3 shows the relationship between carbon emissions and cost
across all benchmarks. The figure illustrates a "<"-shaped trend as
memory configurations increase. The sharp cost rise beyond the
Pareto-optimal point stems from this cloud provider charging for al-
located—not utilized—resources. For all benchmarks, optimizing for
cost leads to carbon optimization. As a result, rightsizing serverless
functions will kill two birds with one stone.

3.3.2 Carbon vs. Performance. As Figure 4 shows, optimizing for
performance can reduce carbon emissions until the resources re-
quired by the function are satisfied. Beyond that point (the knee of
the L-shaped curves), increasing the memory configuration merely
raises carbon emissions due to the underutilization of resources
without improving performance. This underscores the importance
of rightsizing serverless functions to optimize performance and
minimize carbon emissions resulting from resource over-allocation.

3.4 Sources of Variance
3.4.1 Cold Starts vs.Warm Starts. Cold start executions have higher
emissions than warm starts, as quantized in Figure 5. This is due to
added resource usage and allocated resources prior to the function
execution. The relative increase in emissions is amplified when: 1)
the function execution is short (Formplug), and 2) the runtime is
slow and resource-intensive, which is the case for JVM (for Java-S3)
compared to Python and Node.js runtimes.

3.4.2 Host Processor. Our logs reveal that various CPU models
are used to execute functions, with the selection being made by
the provider and beyond the developer’s control. Using the data
derived from varying power levels for both active and idle states, as
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Figure 2: The carbon contribution of resources can vary significantly across functions and configurations.
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Figure 3: Carbon and cost optimality align well, making func-
tion rightsizing essential to address both.
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Figure 4: Increasing memory size leads to reduced carbon
and better performance (shorter execution duration) until
resource needs are satisfied, after which excessive memory
merely incurs more carbon without performance gains.

outlined in §2.2, we observe that the underlying CPU model does
not significantly affect carbon emissions (Figure 6).

3.4.3 Input Sensitivity. To assess the impact of input on carbon
footprint, we executed the PyAES and Java-S3 benchmarks using
various workloads. Figure 7 shows the carbon footprint of these
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Figure 5: Cold starts can incur significant carbon emissions.
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Figure 6: Host processors on the studied cloud platform do
not have a major impact on carbon emissions.

functions with different inputs. Black markers in the figure indi-
cate median values. Using different inputs can change resource
consumption as well as execution time, leading to different carbon
emissions. The increase in emissions is not necessarily linear, as
there is a baseline emission incurred even without any work per-
formed on the input for calling the function handler and returning
the response.
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3.4.4 Memory Allocation Model. Most serverless providers, includ-
ingAWSLambda, charge based on configuredmemory, while others,
like Azure Functions, charge only for memory used [54]. The oper-
ational carbon model in Equation (3) accounts for unused allocated
memory. Figure 8 shows the impact on carbon emissions under a
usage-basedmodel (i.e., 𝑃𝑚𝑒𝑚 = 𝑃

ℎ𝑖𝑔ℎ
𝑚𝑒𝑚×𝑚𝑢𝑠𝑒𝑑 ). Distributions cover

all samples across memory configurations. In reality, memory over-
commitment—which cannot be externally measured—means the
true emissions likely fall between the usage-based and allocation-
based results presented in the figure.

4 Challenges and Avenues for Future Research
Based on our above emission characterization results, we identify
several challenges that necessitate further research.

Cloud carbon transparency. We faced challenges of the opaque
cloud infrastructure and the lack of carbon-related metrics from
the provider when modeling the operational and embodied car-
bon of AWS Lambda functions. To estimate the CPU power and
embodied carbon, we referred to the CPU datasheet and research
report of inferred CPU models (Table 1). We also assumed that the
data center leveraged the local power grid and relied on Electricity
Maps to obtain carbon intensity, while the actual energy sources
and intensities may vary. While the analyses of relative trends,
proportions, and correlations are less affected, the absolute carbon
values may be less accurate due to the lack of essential carbon
metrics of cloud data centers (e.g., power grid carbon intensity

and operational and embodied carbon of hardware). To address
this challenge, public cloud providers can increase transparency
by exposing more reliable carbon metrics, carbon proxies, and em-
bodied carbon data [2, 33, 56, 74]. At the same time, providing
fine-grained, real-time carbon emission logs for cloud services can
significantly enhance cloud carbon transparency, enabling develop-
ers to make informed decisions about workload rightsizing, shifting,
and optimization based on carbon emissions. This approach allows
providers to factor in emissions from internal system components
(e.g., for container keep-alive [62] and distributed caches [57]).

The need for dynamic and flexible resource allocation. Prior
work has identified the cost and resource inefficiencies of fixed
resource allocation in serverless [24, 75]. We go beyond that, quan-
tifying how the status quo leads to significant missed opportu-
nities for emission reduction. Firstly, static resource allocation is
carbon-inefficient, especially for input-sensitive applications where
configurations should accommodate peak resource demands [55].
Over-allocation of resources incurs emissions with no gains on
performance (Figure 4). Secondly, proportional CPU-memory al-
location simplifies scheduling but causes unnecessary emissions
unless a function perfectly matches the assigned resource ratio.

Better network energy models. In this study, we faced the lack
of effective methods to model the energy consumption of data trans-
fer. This limitation has been brought up by prior work too; e.g., Lyu
et al. cite “no public data on NICs" [51]. However, the impact can be
more substantial in serverless settings, where typical data transfer
amounts combined with very short execution times [44, 63] result
in a high data-to-compute ratio. Even with the lower than typical
transfer energy of 0.001 kWh/GB (§2.2.3), the share of network in
operational carbon exceeded 50% for network-bound benchmarks
(Figure 2). There is a pressing need for research to develop advanced
network energy models and comprehensive profiling methodolo-
gies to collect relevant system-level information.

5 Related Work
Modeling carbon emissions of serverless systems. While there

has been a large body of work to model carbon emissions of cloud
systems [19, 33, 41, 67], there are only a limited number of works
focused on building specialized carbon models for serverless sys-
tems [26, 50, 58, 64, 65]. Sharma [64] measured the energy footprint
of a specific serverless function using the laptop battery interface.
Chadha et al. [26] leveraged software carbon intensity (SCI) spec-
ification [12], assuming 50% CPU utilization, to model serverless
function emissions in terms of CPU and memory. We use a differ-
ent carbon model that accounts for varying resource usage and
emissions from storage and network. Lin et al. [50] proposed a
per-request carbon model for serverless functions. We adopted a
similar embodied carbon model but employed a different opera-
tional carbon model with alternate power models (linear utilization
and network energy) since dynamic power metering is not feasi-
ble on AWS Lambda. Sharma and Fuerst [65] developed a more
advanced energy consumption quantification method by applying
statistical disaggregation and fair attribution among functions in
a multi-tenant environment. However, this methodology is not
externally applicable due to the unknown mix of co-tenants to
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developers. Basu Roy et al. [58] collected energy consumption es-
timates by reading MSR registers via the RAPL interface on a c5
bare-metal EC2 instance, enabling them to profile the energy us-
age of functions in cloud environments—a technique that is not
applicable to managed serverless platforms like AWS Lambda.

External characterization of emissions of computing sys-
tems. Despite limited access to cloud infrastructure internals, exter-
nally characterizing carbon emissions is a crucial first step toward
optimizing resource usage, identifying new research opportunities,
and promoting sustainability for practitioners. Other researchers
have estimated the carbon footprint of computing systems. A num-
ber of studies target carbon characterization of AI infrastructure in
the cloud [25, 32, 59]. Li et al. [47] have conducted a comprehensive
analysis of the carbon footprint of high performance computing
(HPC) systems. This work is similar in nature but focuses on server-
less functions in a public platform.

Broader efforts by the community to improve the sustain-
ability of cloud systems. The climate urgency along with the
sudden increase in emissions of cloud data centers have fueled
many research endeavors in this space over the past few years.
On the provider side, the community has investigated avenues
such as carbon-aware scheduling [26, 40, 43], auto-scaling [39],
load balancing [60], incentive design [36], edge offloading [46],
resource pooling [38], and even hardware design [73]. From the
developer side, there is middleware that allows developers can use
for workload shifting [37] to reduce emissions without support
from providers. There are also specialized tools and libraries they
can use for energy and carbon estimation, such as Kepler [16]. Our
characterization work is orthogonal to these efforts, aiming to pro-
vide insights for practitioners and motivate them to consider the
role of configuration in the sustainability of serverless workloads.

6 Conclusions
We characterize the carbon footprint of serverless workloads with
various inputs and configurations running on a widely adopted
cloud computing platform, AWS Lambda, across different regions
and hardware. In doing so, we use already-available telemetry and
publicly available information. Our characterization results shed
light on the overall alignment of cost and carbon, but highlight
the need for developers to optimize configurations of serverless
functions. In the future, effective dynamic resource management
can remove this burden. Additionally, there is a need for more
research on fine-grained real-time carbon emission reporting and
modeling the carbon emissions of networks.
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