On Merits and Viability of Multi-Cloud Serverless

Ataollah Fatahi Baarzi

The Pennsylvania State University
ata@psu.edu

Carlee Joe-Wong
Carnegie Mellon University
cjoewong@andrew.cmu.edu

Abstract

Serverless computing is a rapidly growing paradigm in
the cloud industry that envisions functions as the computa-
tional building blocks of an application. Instead of forcing
the application developer to provision cloud resources for
their application, the cloud provider provisions the required
resources for each function “under the hood” In this work,
we envision virtual serverless providers (VSPs) to aggregate
serverless offerings. In doing so, VSPs allow developers (and
businesses) to get rid of vendor lock-in problems and exploit
pricing and performance variation across providers by adap-
tively utilizing the best provider at each time, forcing the
providers to compete to offer cheaper and superior services.
We discuss the merits of a VSP and show that serverless sys-
tems are well-suited to cross-provider aggregation, compared
to virtual machines. We propose a VSP system architecture
and implement an initial version. Using experimental evalu-
ations, our preliminary results show that a VSP can improve
maximum sustained throughput by 1.2x to 4.2x, reduces SLO
violations by 98.8%, and improves the total invocations’ costs
by 54%.

CCS Concepts

« Computer systems organization — Cloud comput-
ing.

Keywords

serverless, multi-cloud, cloud computing

ACM Reference Format:
Ataollah Fatahi Baarzi, George Kesidis, Carlee Joe-Wong, and Mo-
hammad Shahrad. 2021. On Merits and Viability of Multi-Cloud

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

SoCC °21, November 1-4, 2021, Seattle, WA, USA

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8638-8/21/11...$15.00
https://doi.org/10.1145/3472883.3487002

George Kesidis
The Pennsylvania State University
gik2@psu.edu

Mohammad Shahrad

University of British Columbia
mshahrad@ece.ubc.ca

Serverless. In ACM Symposium on Cloud Computing (SoCC ’21),
November 1-4, 2021, Seattle, WA, USA. ACM, New York, NY, USA,
9 pages. https://doi.org/10.1145/3472883.3487002

1 Introduction

Serverless computing is one of the fastest growing cloud
paradigms. It aims to decouple infrastructure management
from application development. Under the serverless para-
digm, the application developer does not worry about provi-
sioning and up-/down-scaling resources, which can be par-
ticularly tricky in the shadow of varying demand. Instead,
the provider conducts automatic and scalable provisioning.
This, complemented with the pay-as-you-go model and scale-
down-to-zero capabilities have made serverless one of the
most exciting cloud models for developers. Today, all ma-
jor cloud providers have serverless offerings, mainly in the
form of Function-as-a-Service (FaaS): AWS Lambda, Azure
Functions, Google Cloud Functions, and IBM Cloud Func-
tions. Serverless is still growing rapidly, where new system
features are frequently introduced and various aspects of
pricing and quality of service (QoS) are constantly re-visited.

In this paper, we present and argue for the concept of
Virtual Serverless Provider (VSP), a third-party entity that
aggregates serverless offerings from multiple providers and
seamlessly delivers a superior unified serverless to devel-
opers. In doing so, it prevents vendor lock-in problems and
exploits competition between providers to achieve a conflu-
ence of cost, performance, and reliability goals. Specifically,
this paper presents the merits of having VSPs take advantage
of different pricing schemes as well as variable performance
and to achieve enhanced cost, performance, and scalability.

Certain characteristics of serverless systems and ongo-
ing technology trends make the VSP model viable. Unlike
conventional cloud federations of VMs, serverless functions
are much lighter and faster to deploy, eliminating the pain
of slow migrations. Additionally, there are already a num-
ber of open-source provider-agnostic serverless frameworks
and tools that pave the way towards building efficient and
cost-effective multi-cloud serverless aggregation. Finally, a
number of recent technical advances and ongoing research
areas will improve the performance predictability of today’s

https://doi.org/10.1145/3472883.3487002
https://doi.org/10.1145/3472883.3487002

SoCC ’21, November 1-4, 2021, Seattle, WA, USA

Cost

Request Cost Function Execution Cost

. Free Add. Cost Min. Round-up | Mem.
Provider | Free | Add. Cost (GB-s) (per GB-s) | Duration Resol. Metering
AWS 1M $0.2/M 400,000 | $1.67 X 107° 1ms 1ms Static
Lambda
Azure 1M | $0.256/M | 400,000 | $2.1x 1075 | 100 ms Ims | Dynamic
Functions
GCP « 5% .

. 2M $0.4/M 400,000 | $2.5x 107 100 ms 100 ms Static

Functions

Table 1: The pricing schemes of AWS Lambda, Azure
Functions and GCP Cloud Functions consumption
plan as of May 28, 2021. (M: Million, GB-s: GB-seconds).
: GCP Cloud Functions charges additional $10™ per
GHZ-seconds with 200,000 free GHZ-seconds.

highly variable serverless systems [18]. Increased predictabil-
ity allows the VSP to better optimize choices.

Designing and implementing VSPs opens new research
directions. One such avenue is developing domain-specific
VSPs (e.g., for ML [11], etc.) to enhance the optimality of the
multi-cloud deployment. This can potentially lead to new
cloud market structures.

2 Merits

2.1 Harnessing Cost and Service Variances

Table 1 summarizes the pricing elements for three pop-
ular serverless providers as of May 28, 2021. As seen, the
final cost of a serverless function! depends on the number
of invocation requests as well as execution. The execution
cost is a combination of memory usage and execution time.
AWS Lambda and Azure Functions offer the same limits
on their free tiers: the first one million requests and 400
GB-seconds in a month are free. Beyond that, AWS Lambda
charges slightly less than Azure Functions for additional
requests and GB-s. However, the way the GB-second con-
sumption is calculated varies between these two providers.
Azure Functions comes with the overhead of charging for at
least 100ms of execution, whereas Lambda is limited by static
memory allocation and charging for memory even when the
function is not using it. This makes running a sub-hundred-
millisecond function with consistent memory usage cheaper
on Lambda, and running a two-hundred-millisecond func-
tion with bursty memory usage cheaper on Azure Functions.
There exist many more subtle differences in serverless pric-
ing, especially when the entire ecosystem including storage
and third-party services is considered. However, this simple
example should suffice in elaborating that the cost-optimally
of each serverless provider depends on the workload. The
VSP can exploit this to minimize developers’ overall costs
while maintaining acceptable performance.

In addition to using provider differences to reduce cost, the
VSP can use it for performance optimizations. An example is
how different providers deploy various function keep-alive
policies, considering that function containers/VMs cannot

IThis excludes additional storage or data transfer costs.

Ataollah Fatahi Baarzi, George Kesidis, Carlee Joe-Wong, and Mohammad Shahrad

be kept alive (resident in memory) indefinitely [44, 51]. The
VSP can pick the one that suits the application the best. For
instance, if invocations are infrequent and too irregular and
bound to get cold starts anyway, the VSP would rather map
it to the FaaS provider with the cheapest offering, regardless
of performance. On the other hand, an application with a
predictable invocation pattern can benefit from Azure Func-
tions’ adaptive Hybrid Histogram policy [44] to get fewer
cold starts and thus better average and tail latency.

Pushing this angle further, the VSP can also use the real-
time performance monitoring data to adaptively distribute its
function requests away from those providers experiencing
a slowdown. This strategy is supported by empirical evi-
dence that the performance variation for different providers
is statistically independent. Wang et al. monitored the cold
start latency of AWS, Google, and Azure for over a week
and showed that their performance degradation is uncor-
related [51]. Performance variation is not limited to differ-
ent providers and can exist across various regions of the
same provider. Ginzburg et al. [18] reported significant per-
formance variations in two AWS Lambda regions: an 11%
difference in end-to-end performance as well as a 12-hour
lag in daily performance degradation hour. In Section 5 we
demonstrate the feasibility and performance benefits of such
adaptive scheduling across serverless platforms.

2.2 Fusing the Benefits of Providers

Scalability is a central promise of serverless computing
and stems from the fact that developers are not responsible
for resource provisioning. It is achieved by state-of-the-art
auto-scalers, relying on function images being lightweight,
and functions being stateless often. Despite all of these, this
scalability is not infinite. Previous characterization studies on
production serverless systems have observed different scal-
ability rates and patterns for various providers [31]. Lloyd
et al. observed that going beyond fifty concurrent requests
significantly increased the cold-run execution time of func-
tions served by Azure Functions [29]. Parallel deployment
on multiple serverless providers allows the VSP to increase
the scalability limits, both in terms of ramp-up speed as well
as sustained throughput. This parallel deployment requires
low-latency load balancing at the VSP, which is viable, as
the VSP is not performing high latency tasks such as lan-
guage runtime or application-specific initializations [48]. We
demonstrate this later in Section 5.

In addition to scalability benefits, using multiple providers
for each application creates a larger virtual monthly free-tier
by combining free-tier limits from multiple providers. This
potential should not be overlooked, as recent production
serverless traces released by Azure [44] revealed that the
majority of serverless applications are invoked infrequently
(“81% of the applications are invoked once per minute or less

On Merits and Viability of Multi-Cloud Serverless

on average" [44]). This means that while a small percentage
of applications that are heavily invoked would probably see
no cost-saving from free tier extension, a significant share
of medium class applications would enjoy it.
2.3 Data-Aware Deployment

In a multi-cloud setting, it is possible that the business
data and compute resources are distributed among different
cloud providers due to business decisions or other technical
or economic incentives. In such cases, putting computation
closer to the data is the desired approach [54]. A business
might not be able to migrate parts of data out of a provider
or region to comply with data governance and protection
laws such as GDPR. A VSP would ease the deployment of
such applications by scheduling and deploying functions
such that 1) they are as close as possible to the data that they
consume, 2) the data transfer between regions is minimized
to reduce data transfer (and processing) costs, and 3) data
protection laws are complied with.
3 Viability

We next consider the viability of building a VSP. To do so,
we compare serverless to conventional cloud systems already
federated. We also enumerate a number of new systems and
technology trends that either have paved or will pave the
way for VSPs.
3.1 Fast Dispatch

Conventional federated cloud systems are built on top of
slow-booting VMs. This requires caching VM images or keep-
ing some backup VMs alive in order to ensure smooth tran-
sitions between providers. Building a federation of server-
less offerings, however, is easier to handle as the cold boot
of functions is much faster than that of VMs. Initiating a
medium-size VM on AWS EC2 with 2 vCPUs, 8 GB of mem-
ory, and 8 GB of SDD storage (100/3000 IOPS) took us ~250
seconds 2. On the other hand, initiating Node.js 8 or Python
3.6 functions on AWS Lambda took around ~1 seconds, which
is 250 times faster. These VM initiation measurements were
conducted without transferring any VM or container images;
if those transfers were included, the gap in initiation times
would have been even more dramatic due to the significantly
larger size of VM images. Thus, VSP users would likely ex-
perience significantly lower delays than in traditional cloud
federations, making them a viable option for application
developers.
3.2 Provider-Agnostic APIs and Bridges

Vendor lock-in hinders the viability of VSPs: Serverless of-
ferings are often designed to be compatible with other cloud
services within the cloud provider. For example, they might
have native integration with other services such as event
sources, logging and metrics services, queue services, and

2This measurement was taken using a Ubuntu Server 18.04 LTS image in
the North Virginia region.

SoCC ’21, November 1-4, 2021, Seattle, WA, USA

other specific services on the cloud provider they belong to.
Because of this service-level vendor lock-in problem, server-
less developers cannot always benefit from services offered
by other cloud providers.

Fortunately, there are several tools and frameworks which
prevent API lock-in at the API-level [45]. Examples include
the Serverless Framework [42], Gloo [19], PyWren [22], Fn
Project [15], and Nimbella [36]. For instance, Gloo is an
API gateway and controller specifically designed to support
hybrid applications and clouds.

In a multi-cloud setting, it is also vital to allow functions
to consume events from different event sources on multiple
clouds. New systems have been introduced to support cross-
cloud event bridging. Unlike AWS’s EventBridge [3], Trig-
gerMesh’s EveryBridge [14] can consume event data from
various sources to trigger functions on any public or private
cloud. Open source and cloud-native initiatives such as Kna-
tive [24] can also be used. In particular, Knative Eventing [25]
can be used to implement cloud-agnostic event sources and
event consumers.

Regarding the service-level vendor lock-in problem, there
remain opportunities to develop more tools and platforms
to support seamless cross-cloud bridging in order to enable
serverless functions on one cloud to utilize services on an-
other cloud. Collectively, these tools and platforms circum-
vent the locking effect from provider-specific APIs and ser-
vices and pave the way towards production class VSPs.

3.3 Performance Predictability

Increased performance predictability of serverless systems
would facilitate building VSPs. Currently, one major source
of latency variation in serverless environments is cold start
overhead. There have been many advances on this topic
in the past few years. These include techniques that reduce
cold start latency, including lightweight virtualization [1, 49],
sandboxing [2], snapshotting [10, 13], ahead-of-time alloca-
tion of network interfaces [32], and language runtime opti-
mizations [12]; and techniques that reduce the number of
cold starts through adaptive lifetime management of func-
tions [8, 16, 44]. Given the ongoing research in this angle, we
anticipate cold start effects to be mitigated to a great degree.
Data caching is another practical solution for performance
predictability and cost reduction [35, 40].

4 Proposed Architecture

Building and deploying a VSP requires careful design of
an architecture that can ensure seamless transitions between
providers and exploit variations in pricing and performance.
Figure 1 shows a high-level overview of our proposed archi-
tecture for the VSP, consisting of eight modules: a utility-
driven scheduler, controller, event bridge, performance mon-
itor, pre-loader, local cache, billing, and authentication. We
describe the role of each of these modules below.

SoCC ’21, November 1-4, 2021, Seattle, WA, USA

s

Function
Source Code

Deployment Utilit
[|
[|
Invocations

&

Figure 1: The high-level overview of the proposed VSP.

Utility-driven Scheduler: This module uses performance
metrics and cost information to find the right provider(s) to
maximize user utility. Utility optimization policies could
include cost minimization, performance maximization, or
arbitrary combinations of the two objectives. The scheduler
also considers hard constraints such as compliance, resource
allocation limits, etc. to eliminate unacceptable providers.
To account for potential variations in performance and to
avoid overloading a single provider (and potentially degrad-
ing its performance), the scheduler may identify multiple
providers that provide near-optimal performance. Since func-
tion performance can vary not only between providers but
also between different regions of a single provider, the gran-
ularity of cloud environment options that we consider is a
single region of a single provider.

Controller: The controller maps requests of each applica-
tion to its set of providers according to the scheduler’s utility
optimization results, acting as a lightweight load balancer
across the providers identified by the scheduler. For instance,
if the performance at one provider suddenly degrades, the
controller can quickly shift to another provider.

Event Bridge: Once the scheduler schedules different
functions on different cloud environments, it is possible that
a function on cloud A, needs to consume events from cloud
B. This module as discussed before enables cross-cloud event
sourcing and consumption.

Performance Monitor: A function’s performance can
vary over time due to varying inputs or as a result of change
in the QoS of underlying providers. As a result, the set of
optimal providers may vary as well. This module logs and
tracks performance metrics such as latency and execution
times of functions running on different providers. If a major
deviation from the performance history is observed, this
module can trigger the utility-driven scheduler to update the
optimized mapping of functions/applications to providers.

Pre-loader: In case the scheduler identifies new providers
(or new regions within the same provider) as part of the set

Ataollah Fatahi Baarzi, George Kesidis, Carlee Joe-Wong, and Mohammad Shahrad

of optimal providers, this module starts initializing and in-
voking the application functions in the new provider/region
to warm them up. It then notifies the controller module to up-
date the set of available regions, and the controller can begin
utilizing the new provider. This module reduces perceived
latency caused by switching to new providers.

Cache: Maintaining a local cache at the VSP enables a
number of optimizations. For pure and memoizable functions,
this eliminates sending repetitive invocations to providers.
For functions with annotated data intent [47], the VSP can
use the cached data to accelerate data movement across
providers to keep compute and data co-located. For generic
functions without annotations or hints, recent serverless
data cache designs such as OFC [35] and Faa$T [40] can be
extended to operate at the VSP-level. The main challenges in
designing the VSP’s cache are delivering consistency guar-
antees and prioritizing what to cache and for what duration.

The VSP finally needs billing and authentication mod-
ules to facilitate developer payments and authentication be-
tween users and Faa$S providers. The billing service keeps
track of the number of requests from each user, the execu-
tion, and the corresponding providers; the VSP can then bill
developers directly for both its own aggregation services
and the serverless computing resources that they use at each
provider. The authentication module should bridge the end-
to-end authentication between users and Faa$ providers.

In terms of developer experience, deploying a serverless
application is similar to deploying to the cloud environment
that the developer is currently using. In addition to the re-
quired deployment configuration, the developer will provide
a list of cloud environments that their application can be
deployed on. A deployment utility is used to deploy the ap-
plication on a VSP backed by multiple cloud environment
options.

5 Preliminary Results

To further showcase the merits mentioned above, we im-
plemented the prototype of a VSP. Using our preliminary
results, we demonstrate how the VSP allows maintaining the
QoS when a provider slows down and how it reduces the
costs by dynamically prioritizing cheaper providers.
5.1 Experimental Setup

The VSP controller is implemented using GoLang program-
ming language. We deploy the controller on a m4.2xlarge
AWS VM instance with 4 vCPU and 32 GB of memory. We
use an open-loop load generator as our client and deploy it
on a separate m4.2xlarge instance. Our evaluation bench-
marks cover a range of applications and consist of these five
functions®:

e NLP: A function that scrapes a random article from
Wikipedia and builds a bag-of-words model from it.

3 Available here: https://github.com/PSU-Cloud/vsp-benchmark

https://github.com/PSU-Cloud/vsp-benchmark

On Merits and Viability of Multi-Cloud Serverless

s AWS
ImE GCP

w W
e u
o O

B8 Multi-Cloud

Al

N
u
o

[
u
o

]
(=]

Maximum Sustained Throughput
S
<}

(=}

eg‘t‘ od\“g \—
maQ de°
Benc h marks

Figure 2: Given the same concurrency limit (1,000), the
maximum sustained throughput is different for AWS
and GCP. The multi-cloud VSP seamlessly increases
this throughput.

e [mage Resizing: A function that gets an image from
an S3 bucket and resizes it to three target sizes and a
thumbnail.

o Video Encoding: A function that gets a video file from
an S3 bucket and converts it to GIF format using the
[ffmpeg utility.

e ALU: A CPU-intensive function from the Serverless-
Bench [53] that launches a random number of threads
to perform arithmetic calculations in a loop with a
random number of iterations.

e Sleepy: A function that sleeps for one second, then
sends a request to a back-end web service and it returns
once the response is received. The web service receives
a random number from the functions and performs an
addition to it and returns.

Unless otherwise mentioned, all the functions are configured
to have 512 MB of memory. We use AWS Lambda and Google
Cloud Functions as the underlying providers of the VSP.
5.2 Results

Increasing the concurrency limit. In order to provide
highly available managed services, cloud providers set limits
on individual tenant’s usage. In particular, for FaaS offerings,
they set limits on the number of concurrent instances of the
function serving invocations. Additional invocations beyond
the concurrency limit will fail with throttling errors. A VSP
can prevent such failures and thus improve the quality of
service by avoiding scheduling further invocations to the
cloud provider that has reached its concurrency limit.

To demonstrate this, we deployed our benchmarks on
both providers to find the maximum throughput at which
we achieve 100% success. Lambda has a default concurrency
limit of 1,000. The concurrency of Google Cloud Functions is

SoCC ’21, November 1-4, 2021, Seattle, WA, USA

configurable and we set it to 1,000 for a fair comparison. Fig-
ure 2 depicts the maximum sustained throughput for each
benchmark using AWS Lambda, GCP Functions, and the
multi-cloud VSP setting. We excluded the Sleepy function as
it is not a representative workload for throughput. For Image
Resizing and Video Encoding, the GCP-only setting has signif-
icantly lower rate as the data resides on an AWS S3 bucket.
We included this case intentionally as this might happen for
a VSP too. The VSP uses Least Outstanding Invocations (LOI)
as its load balancing policy to distribute invocations among
the providers. As seen, the VSP achieves throughput close
to the sum of the two cloud providers’. This is due to its low
added latency — an average of 150us in our measurements.
In particular, compared to the AWS-only setting, the VSP
improves the quality of service by 1.2x (for ALU) to 2x (for
NLP). Compared to GCP only setting, the VSP improves
the quality of service by 2.5x (for ALU) to 4.2x (for Image
Resizing).

Latency-aware deployment. As discussed in Section 2.1,
VSPs can exploit the variable performance of different cloud
providers to reduce latency and cost (through execution time
reduction). In particular, by monitoring the performance of
each provider, a VSP can identify latency SLO violations
and avoid scheduling the invocations to the problematic
provider to mitigate SLO violations. To demonstrate this, we
deploy the Sleepy function and the back-end web services
on both AWS and GCP cloud and set the latency SLO to 1.2
seconds. We run a fixed load of 30 requests per second for 4
minutes. To identify the SLO violation, the VSP maintains
the Exponentially Weighted Moving Average (EWMA) of
latency values for each cloud provider. The VSP de-prioritizes
scheduling to the cloud provider(s) with EWMA latency
violating the SLO. To emulate performance degradation at
a provider, we inject a synthetic anomaly [38] at time ¢ =
30s to add an additional 250ms latency to the GCP function
executions. The anomaly lasts for 170 seconds, and after that,
the web service continues to perform normally.

Figure 3 shows the end-to-end latency of invocations. We
compare the performance of three settings for the VSP: sin-
gle provider (GCP), two-provider latency-agnostic VSP with
round-robin load balancing, and two-provider setup with
latency-aware scheduling. As seen, once the anomaly starts,
the invocation latency for the single provider and the latency-
agnostic settings increases and lasts during the entire 170-
second window. Note that as the back-end web service gets
overloaded by the constant invocation rate, latency variance
also increases. The latency-aware VSP adapts to the situation
in roughly two seconds (given the EWMA averaging, it is
not instantaneous) and diverts invocations to the healthy
provider (AWS Lambda here).

SoCC ’21, November 1-4, 2021, Seattle, WA, USA

(a) Single Provider

6 (b) Multi Provider Latency-Agnostic

Ataollah Fatahi Baarzi, George Kesidis, Carlee Joe-Wong, and Mohammad Shahrad

(c) Multi Provider Latency-Aware

wu
L

I

Latency (second)
w
Latency (second)
w

Latency (second)
w

e

Y Sy ———

2 13 ; - 2
k . .
Lok —d i o % ..
1 it 1 ke
| i
o L— T T T [} L
o 50 100 150 200 o 50

Invocation Start Time (second)

100

Invocation Start Time (second)

I
T 0o T T T T
200 0o 50 100 150 200

Invocation Start Time (second)

150

Figure 3: Performance of various VSP scheduling strategies under injected latency anomaly in the 30s-200s win-
dow. A latency-aware approach diverts invocations from the slow provider and guarantees meeting the SLO.

Cost improvements. In the pay-as-you-go pricing model
of serverless, applications are charged for their true exe-
cution. Thus, a higher execution time for non-application-
related reasons such as high context switches in overloaded
servers [43] would entail a higher cost for developers [5, 17].

In the last experiment, we added the 250ms extra latency
by increasing execution times. In reality, latency variances
can stem from non-execution-related sources, such as a net-
work slow-down, an overloaded API gateway, or other sorts
of gray failure [21]. However, for brevity, we use the same
simple experiment to show the impact of cost-aware schedul-
ing when execution times are monitored by the VSP. Figure 4
shows the distribution of invocation cost and latency values
for the experiments shown above in Figure 3. As seen, using
a multi-cloud cost-/latency-aware VSP reduces the cost as
well as the latency by diverting invocations from the slow
provider during the slow-down window. In particular, un-
der the cost-aware VSP, 99% of the requests cost less than
$1.02 % 107> compared to $1.4 * 107> and $2.25 * 10 >under
the cost-agnostic VSP and the single provider deployments,
respectively. This is equivalent to 27% and 54% cost improve-
ments, respectively.

Note that the cost numbers in this experiment only reflect
the execution cost that is often the primary cost factor for
serverless systems. However, depending on the application,
the total service cost can include other components such as
storage cost. Specifically, in situations where data need to be
replicated across cloud platforms storage costs can become
more significant. The cost calculations and comparison in
such scenarios are left for future work.

6 Discussion

Feedback: We are looking to receive feedback from the
community on the technical and economic viability of vir-
tual serverless providers, i.e., whether they see any obstacles
that we have not already identified to building or deploying
a VSP, and potential barriers to the adoption of a VSP. We
would also be interested in existing frameworks that might

(a) Invocation Cost Distribution (b) Invocation Latency Distribution

1.0 1.0
0.8 0.8
gos gos
0.4 0.4
0.2 0.2
00736 10-4 102 %0710 104 10%

Cost Per Invocation ($) Latency Per Invocation (ms)

Figure 4: Cost and latency of invocations distribution.

be leveraged to realize this vision, and lessons from prior
work on federated cloud computing that might be applica-
ble. While we believe that serverless computing is uniquely
suited to federations, as detailed in the body of the paper,
some of the challenges that we expect to face (e.g., the need
for policy compliance across provider domains) are similar
to those in other types of cloud federations.

Controversial points: As we discuss in Section 7, feder-
ated architectures and algorithms have been proposed for
cloud services for many years. However, these architectures
are not widely deployed today, in part due to vendor lock-
in effects. Serverless computing is less susceptible to many
obstacles to realizing federated clouds (see Section 3), but it
remains to be seen whether others would prove fatal to build-
ing VSPs. The economic viability of such virtual providers is
also a concern; the VSP’s scheduler would need to be recon-
figured whenever an individual cloud provider significantly
changed its serverless pricing or execution logic, which could
prove infeasible in practice. Additionally, one may argue that
due to economic incentives, cloud providers may try to sabo-
tage the VSPs. In contrast, the VSP can improve the adoption
of serverless computing and hence expanding the market for
cloud providers. Note that, in our proposed model, the VSP
runs third-party code within its own purchased resources
and is thus the sole customer dealing with each provider.

Open challenges: Several research challenges remain be-
fore production-scale VSPs can be realized. Since a (if not
the) major use case of cloud computing is data analytics,
many functions invoked by serverless applications might

On Merits and Viability of Multi-Cloud Serverless

run on data stored at the Faa$ provider. Thus, a viable VSP
will require effective mechanisms for maintaining consistent
data storage across multiple providers without incurring sig-
nificant additional costs. Developing algorithms to optimally
exploit temporal cost and performance variations at the dif-
ferent providers is another open area of research; it is not
clear how the scheduler should determine the optimal set of
Faa$S providers, or how the presence of a VSP would affect
FaaS providers’ pricing and performance policies.

VSP operation costs: The reported cost numbers in this
paper do not include the operation of the VSP itself. We
demonstrate the total savings from aggregating serverless
providers. Based on those savings, the VSP, which is a sep-
arate entity from the providers, developers, and end-users,
decides the profitability of the adoption.

7 Related Work

Researchers have studied various aspects of serverless
computing systems in the past few years. Those span over
scheduling and resource management, isolation and virtual-
ization, novel applications and services, performance anal-
ysis of serverless platforms, and economics of serverless
architecture within a single provider. However, to the best
of our knowledge, the research community has not explored
the multi-cloud serverless angle extensively yet.

Lithops [41] uses Python’s multi-processing library to
enable running Python programs on multiple serverless
providers. It enables the developers to write programs at
once and leverage the scalability of multi-cloud deployment.
Lowgo [27] is a tracing system for serverless applications
deployed on multiple cloud environments and can be used
to record the events and dependencies between to ease the
correctness and performance debugging. Aske et al. [4] pro-
posed deploying serverless applications on the resource-
constrained edge platforms along with the cloud providers. It
is limited to scheduling the application on one environment
at a time based on latency SLO. In contrast, we propose simul-
taneous utilization of multiple providers adaptively based
on a variety of factors including workload patterns, variable
performance, concurrency limits, costs, latency SLOs, data
locality, and security. Furthermore, our design aims to im-
proves the total costs by exploiting different providers and
multiplexing them. Using simulations, other works [7, 26]
have investigated the cost-performance trade-off for execut-
ing the serverless functions in environments with computa-
tion resource heterogeneity and disparity. They introduce
new optimization objectives the results of which can be used
by the VSP’s utility scheduler for better function placement
in a multi-cloud setting,.

Cloud computing users have faced challenges like vendor
lock-in and differences in pricing even before the advent of
serverless computing. To overcome these challenges, several

SoCC ’21, November 1-4, 2021, Seattle, WA, USA

works have proposed federating or interconnecting cloud
services [23]. Such federations allow cloud providers to pool
their resources so that users can build and access services
that operate across multiple providers [39]. Since users can
freely move between providers, the providers are forced to
compete to offer better, less expensive services, thus benefit-
ing users. Indeed, prior work has examined cloud providers’
incentives for joining such a federation [30]. A concurrent
work recently described the merits and viability of aggregat-
ing cloud computing platforms [46]. In this paper, we explore
aggregating serverless offerings, its technical challenges, and
conduct preliminary experiments with a prototype. Other
work has explored building systems for integrating cloud
storage services [9, 52], which, much like our proposed VSP,
allows users to take advantage of differentiated pricing at dif-
ferent storage services. Similarly, other work has studied the
aggregation of content delivery network (CDN) providers
[20, 28, 33, 34]. In doing so, distributing an object across
multiple CDN providers is somewhat similar to our setup.
Building such a virtual provider for serverless computing,
however, raises new challenges: in particular, the decision
of which provider to use at which time must account for
not only storage costs but also execution costs and temporal
variations in the performance of the serverless functions.
Recently, [50] showed the feasibility of the serverless ag-
gregation idea using a small local cluster. However, we are
advocating for large-scale public cloud federation.

Another line of research aims to build algorithms to dy-
namically utilize multiple cloud services or providers in order
to minimize cost. Much of this work has focused on utiliz-
ing Amazon EC2’s spot and burstable offerings, which offer
discounted services at lower availability [6, 37, 55]. These
works generally attempt to minimize user costs while partic-
ipating in multiple markets, with the hope that at least one
market will have available resources that the user can utilize
at any given time. Thus, their focus is on managing avail-
ability by exploiting the dynamics of the spot market. Other
work [56] has examined the viability of a virtual provider
that aggregates user jobs at multiple cloud providers in order
to save costs. However, the temporal variation in serverless
computing performance, as well as the relative complexity
of its pricing policies, likely require the VSP to develop new
scheduling algorithms for mapping functions to providers.

Acknowledgments

We thank David Wentzlaff, Yiying Zhang, and Samuel
Ginzburg for their valuable feedback on this work. We also
thank the anonymous reviewers and our shepherd, Dongsu
Han, for helping us improve the paper. This work was sup-
ported in part by NSF CCF grant 2028929, NSF CNS grant
2122155, NSF CNS grant 1751075, NSERC grant RGPIN-2021-
03714, and the AWS Cloud Credits for Research program.

SoCC ’21, November 1-4, 2021, Seattle, WA, USA

References

(1]

—
oo
—

(10]

(11]

(12]

(13]

Alexandru Agache, Marc Brooker, Alexandra Iordache, Anthony
Liguori, Rolf Neugebauer, Phil Piwonka, and Diana-Maria Popa. Fire-
cracker: Lightweight virtualization for serverless applications. In 17th
Usenix symposium on networked systems design and implementation
(NSDI 20), pages 419-434, 2020.

Istemi Ekin Akkus, Ruichuan Chen, Ivica Rimac, Manuel Stein, Klaus
Satzke, Andre Beck, Paarijaat Aditya, and Volker Hilt. SAND: To-
wards high-performance serverless computing. In 2018 Usenix Annual
Technical Conference (USENLX ATC 18), pages 923-935, 2018.
Amazon EventBridge. https://aws.amazon.com/eventbridge/. Last
accessed on 9/28/2020.

Austin Aske and Xinghui Zhao. Supporting multi-provider server-
less computing on the edge. In Proceedings of the 47th International
Conference on Parallel Processing Companion, pages 1-6, 2018.

AWS lambda pricing. https://aws.amazon.com/lambda/pricing/. Last
accessed on 5/28/2021.

Ataollah Fatahi Baarzi, Timothy Zhu, and Bhuvan Urgaonkar. BurScale:
Using burstable instances for cost-effective autoscaling in the public
cloud. In Proceedings of the ACM Symposium on Cloud Computing,
pages 126-138, 2019.

Matt Baughman, Rohan Kumar, Ian Foster, and Kyle Chard. Expanding
cost-aware function execution with multidimensional notions of cost.
In Proceedings of the 1st Workshop on High Performance Serverless
Computing, pages 9-12, 2020.

David Bermbach, Ahmet-Serdar Karakaya, and Simon Buchholz. Using
application knowledge to reduce cold starts in FaaS services. SAC *20,
page 134-143. ACM, 2020.

Alysson Bessani, Miguel Correia, Bruno Quaresma, Fernando André,
and Paulo Sousa. DepSky: dependable and secure storage in a cloud-
of-clouds. ACM TOS, 2013.

James Cadden, Thomas Unger, Yara Awad, Han Dong, Orran Krieger,
and Jonathan Appavoo. SEUSS: skip redundant paths to make server-
less fast. In Proceedings of the Fifteenth European Conference on Com-
puter Systems, pages 1-15, 2020.

Joao Carreira, Pedro Fonseca, Alexey Tumanov, Andrew Zhang, and
Randy Katz. Cirrus: A serverless framework for end-to-end ML work-
flows. In Proceedings of the ACM Symposium on Cloud Computing,
pages 13-24, 2019.

Joao Carreira, Sumer Kohli, Rodrigo Bruno, and Pedro Fonseca. From
warm to hot starts: Leveraging runtimes for the serverless era. HotOS,
2021.

Dong Du, Tianyi Yu, Yubin Xia, Binyu Zang, Guanglu Yan, Chenggang
Qin, Qixuan Wu, and Haibo Chen. Catalyzer: Sub-millisecond startup
for serverless computing with initialization-less booting. In Proceedings
of the Twenty-Fifth International Conference on Architectural Support
for Programming Languages and Operating Systems, pages 467481,
2020.

TriggerMesh EveryBridge. https://triggermesh.com/cloud_native_
integration_platform/everybridge/. Last accessed on 9/28/2020.

Fn project. https://fnproject.io/. Last accessed on 5/28/2021.
Alexander Fuerst and Prateek Sharma. FaasCache: keeping serverless
computing alive with greedy-dual caching. In Proceedings of the 26th
ACM International Conference on Architectural Support for Programming
Languages and Operating Systems, pages 386—400, 2021.

GCP cloud function pricing. https://cloud.google.com/functions/
pricing. Last accessed on 5/28/2021.

Samuel Ginzburg and Michael J Freedman. Serverless isn’t server-less:
Measuring and exploiting resource variability on cloud FaaS platforms.
In Proceedings of the 2020 Sixth International Workshop on Serverless
Computing, pages 43-48, 2020.

[19]

[20]

[21]

[22]

[23]

[24]
[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

Ataollah Fatahi Baarzi, George Kesidis, Carlee Joe-Wong, and Mohammad Shahrad

What is gloo edge. https://docs.solo.io/gloo-edge/latest/. Last accessed
on 5/28/2021.

Oliver Hohlfeld, Jan Riith, Konrad Wolsing, and Torsten Zimmermann.
Characterizing a meta-CDN. In International Conference on Passive
and Active Network Measurement, pages 114-128. Springer, 2018.
Peng Huang, Chuanxiong Guo, Lidong Zhou, Jacob R. Lorch, Yingnong
Dang, Murali Chintalapati, and Randolph Yao. Gray failure: The
Achilles’ heel of cloud-scale systems. In Proceedings of the 16th Work-
shop on Hot Topics in Operating Systems, HotOS ’17, page 150-155.
ACM, 2017.

Eric Jonas, Qifan Pu, Shivaram Venkataraman, Ion Stoica, and Ben-
jamin Recht. Occupy the cloud: Distributed computing for the 99%. In
Proceedings of the 2017 Symposium on Cloud Computing, pages 445-451,
2017.

Kiranbir Kaur, DR Sandeep Sharma, and DR Karanjeet Singh Kahlon.
Interoperability and portability approaches in inter-connected clouds:
A review. ACM Computing Surveys (CSUR), 50(4):1-40, 2017.
Knative. https://knative.dev/. Last accessed on 5/28/2021.

Knative Eventing. https://knative.dev/docs/eventing/. Last accessed
on 5/28/2021.

Rohan Kumar, Matt Baughman, Ryan Chard, Zhuozhao Li, Yadu Babuji,
Ian Foster, and Kyle Chard. Coding the computing continuum: Fluid
function execution in heterogeneous computing environments. In
2021 IEEE International Parallel and Distributed Processing Symposium
Workshops (IPDPSW), pages 66-75. IEEE, 2021.

Wei-Tsung Lin, Chandra Krintz, and Rich Wolski. Tracing function
dependencies across clouds. In 2018 IEEE 11th International Conference
on Cloud Computing (CLOUD), pages 253-260. IEEE, 2018.
Honggiang Harry Liu, Ye Wang, Yang Richard Yang, Hao Wang, and
Chen Tian. Optimizing cost and performance for content multihoming.
In Proceedings of the ACM SIGCOMM 2012 conference on Applications,
technologies, architectures, and protocols for computer communication,
pages 371-382, 2012.

Wes Lloyd, Shruti Ramesh, Swetha Chinthalapati, Lan Ly, and Shrideep
Pallickara. Serverless computing: An investigation of factors influenc-
ing microservice performance. IEEE IC2E, 2018.

Lena Mashayekhy, Mahyar Movahed Nejad, and Daniel Grosu. Cloud
federations in the sky: Formation game and mechanism. IEEE Trans-
actions on Cloud Computing, 3(1):14-27, 2014.

Garrett McGrath and Paul R Brenner. Serverless computing: Design,
implementation, and performance. In 2017 IEEE 37th International
Conference on Distributed Computing Systems Workshops (ICDCSW),
pages 405-410. IEEE, 2017.

Anup Mohan, Harshad Sane, Kshitij Doshi, Saikrishna Edupuganti,
Naren Nayak, and Vadim Sukhomlinov. Agile cold starts for scal-
able serverless. In 11th {USENIX} Workshop on Hot Topics in Cloud
Computing (HotCloud 19), 2019.

Matthew K Mukerjee, Ilker Nadi Bozkurt, Bruce Maggs, Srinivasan
Seshan, and Hui Zhang. The impact of brokers on the future of content
delivery. In proceedings of the 15th ACM Workshop on Hot Topics in
Networks, pages 127-133, 2016.

Matthew K Mukerjee, Ilker Nadi Bozkurt, Devdeep Ray, Bruce M
Maggs, Srinivasan Seshan, and Hui Zhang. Redesigning CDN-broker
interactions for improved content delivery. In Proceedings of the 13th
International Conference on emerging Networking EXperiments and
Technologies, pages 68-80, 2017.

Djob Mvondo, Mathieu Bacou, Kevin Nguetchouang, Lucien Ngale,
Stéphane Pouget, Josiane Kouam, Renaud Lachaize, Jinho Hwang, Tim
Wood, Daniel Hagimont, Noél De Palma, Bernabé Batchakui, and Alain
Tchana. OFC: an opportunistic caching system for FaaS platforms. In
Proceedings of the Sixteenth European Conference on Computer Systems,
pages 228-244. ACM, 2021.

https://aws.amazon.com/eventbridge/
https://aws.amazon.com/lambda/pricing/
https://triggermesh.com/cloud_native_integration_platform/everybridge/
https://triggermesh.com/cloud_native_integration_platform/everybridge/
https://fnproject.io/
https://cloud.google.com/functions/pricing
https://cloud.google.com/functions/pricing
https://docs.solo.io/gloo-edge/latest/
https://knative.dev/
https://knative.dev/docs/eventing/

On Merits and Viability of Multi-Cloud Serverless

(36]
(37]

(38]

(39]

[40

[t

Nimbella. https://nimbella.com/platform. Last accessed on 5/28/2021.
Hojin Park, Gregory R Ganger, and George Amvrosiadis. More IOPS
for less: Exploiting burstable storage in public clouds. In 12th USENIX
Workshop on Hot Topics in Cloud Computing (HotCloud 20), 2020.
Haoran Qiu, Subho S. Banerjee, Saurabh Jha, Zbigniew T. Kalbar-
czyk, and Ravishankar K. Iyer. FIRM: An intelligent fine-grained re-
source management framework for slo-oriented microservices. In 14th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI 20), pages 805-825. USENIX Association, 2020.

Benny Rochwerger, David Breitgand, Eliezer Levy, Alex Galis, Kenneth
Nagin, Ignacio Martin Llorente, Rubén Montero, Yaron Wolfsthal, Erik
Elmroth, Juan Caceres, et al. The reservoir model and architecture
for open federated cloud computing. IBM Journal of Research and
Development, 53(4):4-1, 2009.

Francisco Romero, Gohar Irfan Chaudhry, Ifiigo Goiri, Pragna Gopa,
Paul Batum, Neeraja] Yadwadkar, Rodrigo Fonseca, Christos Kozyrakis,
and Ricardo Bianchini. Faa$T: A transparent auto-scaling cache for
serverless applications. In Proceedings of the ACM Symposium on Cloud
Computing, SoOCC ’21. ACM, 2021.

[41] Josep Sampé, Pedro Garcia-Lopez, Marc Sanchez-Artigas, Gil Vernik,

[42]

[43]

[44]

Pol Roca-Llaberia, and Aitor Arjona. Toward multicloud access trans-
parency in serverless computing. IEEE Software, 38(1):68—74, 2020.
The Serverless framework. https://serverless.com. Last accessed on
5/28/2021.

Mohammad Shahrad, Jonathan Balkind, and David Wentzlaff. Architec-
tural implications of function-as-a-service computing. In Proceedings
of the 52nd Annual IEEE/ACM International Symposium on Microarchi-
tecture, pages 1063—-1075, 2019.

Mohammad Shahrad, Rodrigo Fonseca, Ifiigo Goiri, Gohar Chaudhry,
Paul Batum, Jason Cooke, Eduardo Laureano, Colby Tresness, Mark
Russinovich, and Ricardo Bianchini. Serverless in the wild: Character-
izing and optimizing the serverless workload at a large cloud provider.
In 2020 USENIX Annual Technical Conference (USENIX ATC 20), pages
205-218, 2020.

[45] Josef Spillner. Practical tooling for serverless computing. In Proceedings

[46]

(47]

(48]

of the 10th International Conference on Utility and Cloud Computing,
pages 185-186, 2017.

Ion Stoica and Scott Shenker. From cloud computing to sky computing.
In Proceedings of the Workshop on Hot Topics in Operating Systems,
pages 26-32, 2021.

Yang Tang and Junfeng Yang. Lambdata: Optimizing serverless com-
puting by making data intents explicit. In 2020 IEEE 13th International
Conference on Cloud Computing (CLOUD), pages 294-303. IEEE, 2020.
Ali Tariq, Austin Pahl, Sharat Nimmagadda, Eric Rozner, and Siddharth
Lanka. Sequoia: Enabling quality-of-service in serverless computing.
In Proceedings of the 11th ACM Symposium on Cloud Computing, SoOCC
20, page 311-327, 2020.

[49] Jorg Thalheim, Pramod Bhatotia, Pedro Fonseca, and Baris Kasikci.

(50]

[51]

(52]

Cntr: Lightweight OS containers. In 2018 USENIX Annual Technical
Conference (USENIX ATC 18), pages 199-212, 2018.

Adbys Vasconcelos, Lucas Vieira, Italo Batista, Rodolfo Silva, and
Francisco Brasileiro. DistributedFaaS: Execution of containerized
serverless applications in multi-cloud infrastructures, 2019.

Liang Wang, Mengyuan Li, Yingian Zhang, Thomas Ristenpart, and
Michael Swift. Peeking behind the curtains of serverless platforms.
In 2018 USENIX Annual Technical Conference (USENLX ATC 18), pages
133-146, 2018.

Zhe Wu, Michael Butkiewicz, Dorian Perkins, Ethan Katz-Bassett,
and Harsha V Madhyastha. SPANStore: Cost-effective geo-replicated
storage spanning multiple cloud services. In Proceedings of the Twenty-
Fourth ACM Symposium on Operating Systems Principles, pages 292-308,
2013.

[53]

[54]

[55]

[56]

SoCC ’21, November 1-4, 2021, Seattle, WA, USA

Tianyi Yu, Qingyuan Liu, Dong Du, Yubin Xia, Binyu Zang, Zigian
Lu, Pingchao Yang, Chenggang Qin, and Haibo Chen. Characterizing
serverless platforms with ServerlessBench. In Proceedings of the ACM
Symposium on Cloud Computing, SoCC ’20. ACM, 2020.

Tian Zhang, Dong Xie, Feifei Li, and Ryan Stutsman. Narrowing
the gap between serverless and its state with storage functions. In
Proceedings of the ACM Symposium on Cloud Computing, pages 1-12,
2019.

Yang Zhang, Arnob Ghosh, and Vaneet Aggarwal. Optimized port-
folio contracts for bidding the cloud. IEEE Transactions on Services
Computing, 2018.

Liang Zheng, Carlee Joe-Wong, Christopher G Brinton, Chee Wei Tan,
Sangtae Ha, and Mung Chiang. On the viability of a cloud virtual
service provider. ACM SIGMETRICS Performance Evaluation Review,
44(1):235-248, 2016.

https://nimbella.com/platform
https://serverless.com

	Abstract
	1 Introduction
	2 Merits
	2.1 Harnessing Cost and Service Variances
	2.2 Fusing the Benefits of Providers
	2.3 Data-Aware Deployment

	3 Viability
	3.1 Fast Dispatch
	3.2 Provider-Agnostic APIs and Bridges
	3.3 Performance Predictability

	4 Proposed Architecture
	5 Preliminary Results
	5.1 Experimental Setup
	5.2 Results

	6 Discussion
	7 Related Work
	Acknowledgments
	References

