
Parrotfish: Parametric Regression for Optimizing
Serverless Functions

Arshia Moghimi
University of British Columbia

Joe Hattori
University of Tokyo

Alexander Li
University of British Columbia

Mehdi Ben Chikha
INSAT (Tunisia)

Mohammad Shahrad
University of British Columbia

ABSTRACT
Serverless computing is a new paradigm that aims to remove
the burdens of cloud management from developers. Yet right-
sizing serverless functions remains a pain point for develop-
ers. Choosing the right memory configuration is necessary
to ensure cost and/or performance optimality for serverless
workloads. In this work, we identify that using parametric
regression can significantly simplify function rightsizing
compared to black-box optimization techniques currently
available. With this insight, we build a tool, called Parrotfish,
which finds optimal configurations through an online learn-
ing process. It also allows users to communicate constraints
on execution time, or to relax cost optimality to gain perfor-
mance. Parrotfish achieves substantially lower exploration
costs (1.81-9.96×) compared with the state-of-the-art tools,
while delivering similar or better recommendations.

CCS CONCEPTS
• Computer systems organization → Cloud computing.

KEYWORDS
Serverless Computing, Performance Modeling

ACM Reference Format:
Arshia Moghimi, Joe Hattori, Alexander Li, Mehdi Ben Chikha,
and Mohammad Shahrad. 2023. Parrotfish: Parametric Regression
for Optimizing Serverless Functions. In ACM Symposium on Cloud
Computing (SoCC ’23), October 30–November 1, 2023, Santa Cruz,
CA, USA. ACM, New York, NY, USA, 16 pages. https://doi.org/10.1
145/3620678.3624654

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
SoCC ’23, October 30–November 1, 2023, Santa Cruz, CA, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 979-8-4007-0387-4/23/11. . . $15.00
https://doi.org/10.1145/3620678.3624654

1 INTRODUCTION
Serverless computing has gained significant traction in the
past few years. It removes a considerable portion of the
provisioning burden from the shoulders of developers, offers
a pay-per-use pricing model, and accelerates the deployment
of scalable cloud-based applications. Today, all major cloud
providers have serverless offerings in a variety of forms,
such as Function-as-a-Service (e.g., AWS Lambda, Azure
Functions, and Google Cloud Functions), Container-as-a-
Service (e.g., AWS Fargate and IBM Code Engine), and other
domain-specific services (e.g., Google BigQuery). According
to Datadog’s June 2022 analysis of cloud user telemetry [19],
over 70% of organizations using AWS and over 50% of Azure
and Google Cloud users have adopted serverless offerings.

Over the past few years, the research community has pro-
posed intricate solutions to major limitations of serverless
systems. Yet the issue of rightsizing, which every server-
less developer deals with on a day-to-day basis, has received
relatively low attention. It involves setting the correct config-
uration for each building block (e.g., function or container) of
a serverless application, and is an artifact of serverless’s pay-
per-use pricing model. To maximize cost and performance
efficiency, developers need to rightsize their serverless func-
tions when they modify the source code, update libraries,
experience a different request mix from end-users, or when
the provider modifies the pricing parameters. These necessi-
tate frequent, prompt, and cost-efficient rightsizing.

Currently, developers are equipped with rudimentary and
inefficient tools for function rightsizing. Many have to resort
to manually testing their functions with different sizes and
various inputs to find the most cost- or performance-optimal
configuration. Some rely on automated configuration sweep-
ing tools [14], which as we show are costly and do not scale.
The rightsizing burden goes against the serverless philoso-
phy that aims to simplify provisioning aspects for developers.
Rightsizing functions can lower the cost dramatically [57],
so there is real value in building low-cost, high-quality, and
automated function rightsizing tools.
In this work, we uncover a new approach to configuring

serverless functions. We identify that there exists an intrinsic
relation between execution time and resources allocated to

https://doi.org/10.1145/3620678.3624654
https://doi.org/10.1145/3620678.3624654
https://doi.org/10.1145/3620678.3624654

SoCC ’23, October 30–November 1, 2023, Santa Cruz, CA, USA Arshia Moghimi, Joe Hattori, Alexander Li, Mehdi Ben Chikha, and Mohammad Shahrad

serverless functions. By building models relating the two
and leveraging them for parametric regression, we show
that function rightsizing can be done with fewer samples
compared with naive configuration sweeping or black-box
ML-based techniques. Furthermore, we show how the sam-
pling strategy can also be made aware of the sampling cost.
We combine these ideas in a new serverless rightsizing tool,
called Parrotfish (PARametric Regression for OpTimizing
Functions In Serverless). By building an accurate cost model
using parametric regression and with its cost-aware sam-
pling strategy, Parrotfish can reduce the configuration explo-
ration cost by 1.81-9.96× compared to three state-of-the-art
optimization tools. This enables more frequent optimizations,
compounding long-term savings. Developers can use Parrot-
fish in their nightly builds and CI/CD pipelines. Similarly,
providers can use it to rightsize functions at scale.

The execution time and cost models that Parrotfish builds
with a limited number of samples are used for function right-
sizing in this work. The application of this approach is much
broader, especially when resource management relies on ex-
ecution time predictions. Schedulers and load balancers can
use the accurate, per-function execution time models when
controlling tail latency [25], leveraging heterogeneity [41], or
opportunistically harvesting idle resources [42, 59]. Similarly,
adaptive lifetime management policies [41, 50] can leverage
these accurate models to fine-tune keep-alive parameters.

Parrotfish is publicly available at https://github.com/ubc-
cirrus-lab/parrotfish.

2 BACKGROUND AND MOTIVATION
2.1 Serverless Pricing Model
One of the most appealing attributes of serverless for de-
velopers is its pay-per-use pricing model. Developers are
charged for the resources consumed during the execution
of their functions (capacity cost) as well as a fixed fee for
each function invocation (request cost). It is also common for
serverless providers to offer monthly free tiers, for instance,
the first 400,000GB-s and the first one million requests per
month for AWS Lambda.

Inspired by a similar study [11], Table 1 compares the base
pricing model for three popular serverless offerings: AWS
Lambda [5], Azure Functions [10], and IBM Cloud Func-
tions [30]. IBM Cloud Functions charges only for capacity
cost. The capacity cost for these offerings is charged per
GB-s. The monthly capacity usage (GB-s) is calculated as
the sum of capacity usage for function executions in a sub-
scription, where the usage for each execution is determined
as the multiplication of memory (GB) in execution duration
(s). The minimum billed duration, duration rounding resolu-
tion, or even static vs. dynamic metering of memory differs
across providers, as shown in the table. Moreover, there can

Cost
Request Cost Capacity Cost

Provider Free
Tier

Cost per
Million

Free
Tier

Cost per
GB-s

Min Billed
Duration

Round-up
Resol.

Memory
Metering

AWS
Lambda [5] 1 M $0.2 4e5 GB-s $1.67e-5 1 ms 1 ms Static

Azure
Functions [10] 1 M $0.2 4e5 GB-s $1.6e-5 100 ms 1 ms Dynamic

IBM Cloud
Functions [30] ∞ $0 4e5 GB-s $1.78e-5 100 ms 100 ms Static

Table 1: The base pricing model for three popular pub-
lic serverless offerings as of June 4, 2023.

0 1000 2000 3000
Memory (MB)

0.5

1.0

1.5

Co
st

 ($
)

1e−6 PyAES

1500 2000 2500 3000
Memory (MB)

1.4
1.6
1.8
2.0
2.2

1e−3

Too
Low

OCR

Figure 1: High variability of execution times in server-
less hinders modeling the cost function with limited
samples. The unknown minimum memory require-
ments pose an additional challenge.

be discounts to incentivize using alternative architectures
or for high volume customers [5, 10]. However, at its core,
charging for the resource-time is the common practice.
For developers, using Parrotfish makes sense if the total

monthly usage is expected to surpass the provider’s free
tier. Providers, however, can enhance resource efficiency by
rightsizing serverless functions, irrespective of usage tier.
Lastly, to optimize costs, the key focus is on modeling the
average cost per invocation (total cost divided by request
count), rather than predicting tail behavior.

2.2 Why is serverless rightsizing hard?
Finding optimal configurations for serverless functions is
not a straightforward task due to a few practical challenges:
(1) High execution time variability: Serverless execution times

are short. Datadog has reported [18] that the median
AWS Lambda execution time dropped to 60ms in 2020,
from 130ms in 2019. At such short execution times, per-
formance variations due to shared resources (memory
bandwidth [39], last-level cache [49], etc.) have an am-
plified impact on relative jitter. Diurnal load variations
of serverless providers have been shown to have a quan-
tifiable impact on the performance of serverless applica-
tions [26, 45]. Needless to say, the degree of performance
variation depends on the application [26, 34], invoca-
tion pattern [44], and the host architecture [34]. This
performance variation translates into measurement un-
certainty for any configuration optimizer. Figure 1 shows
the cost measurements for two benchmark applications.

https://github.com/ubc-cirrus-lab/parrotfish
https://github.com/ubc-cirrus-lab/parrotfish

Parrotfish: Parametric Regression for Optimizing Serverless Functions SoCC ’23, October 30–November 1, 2023, Santa Cruz, CA, USA

0 1000 2000 3000
Memory (MB)

2.0

2.5

3.0

3.5

Co
st

 ($
)

1e−7

Minimum Cost

PyAES
(1 iteration)

0 1000 2000 3000
Memory (MB)

3.0

3.5

4.0

4.5
1e−5

Minimum Cost

PyAES
(100 iterations)

Figure 2: The cost-optimal configuration for the same
function can vary based on input.

PyAES [32] is a Python function designed for AES block
cipher calculations, while OCR [56] is a Python function
used to extract text from a specified PDF file. The de-
gree of measurement uncertainty is typically exacerbated
for functions with shorter execution times (PyAES here).
Note that cold start executions are excluded here, and the
observed performance jitter is just for warm executions.
Cold starts introduce even higher variations [24, 50, 54].

(2) Minimum memory requirements unknown a priori: Func-
tion execution can fail if sufficient memory is not pro-
vided [9]. The minimum memory requirement is not
known a priori to the configuration optimizer or even to
the developer, is function-specific, and can vary with dif-
ferent inputs to the same function [36]. The OCR function
shown in Figure 1, for instance, needs at least ∼1.5 GB of
memory to run for the specified input.

(3) Input dependence: The execution time and consequently
optimal configuration of functions can be heavily input
dependent. Figure 2 depicts the cost measurements for
the PyAES benchmark using two distinct inputs, resulting
in varying numbers of encryption iterations. The cost-
optimal configuration varies depending on the computa-
tional requirements of the input. This is well documented
by prior work [13, 23, 28, 36].

2.3 State of Serverless Cost Optimization
Choosing a suitable configuration for serverless functions is
necessary to ensure performance and cost optimality. Cur-
rently, there are three approaches used for rightsizing server-
less function configurations:
(1) Manual Search: Developers can manually search for

memory configurations suitable for their functions.While
crude, this approach is used by some today and is guaran-
teed to result in cost savings [12, 33]. The main drawback
of this approach is reduced developer productivity [17].
Manual reconfiguration hinders adaptability to function
changes, fast-evolving workloads, and diverse inputs.

(2) Automated Exhaustive Search: Here, several config-
urations are tested, and the best is chosen based on the

optimization goal (e.g., lowest cost). Tools such as AWS
Lambda Power Tuning [14] fall in this category. This ap-
proach eliminates the need for developers to do the con-
figuration sweep themselves. However, in the face of high
performance variability in serverless functions [24, 26],
high quality results require an exhaustive configuration
sweep, leading to slow and costly explorations.

(3) Learning-Based Search: In this category, the goal is to
estimate the performance model of serverless functions
without prior knowledge. A number of strategies have
been studied in this space, including using Bayesian opti-
mization [1, 60] to estimate the cost and execution time
of serverless functions, and training a machine-learning
model on thousands of serverless functions to build a
performance model [22]. These methods offer higher ef-
ficiency (recommendation quality per exploration cost)
compared to exhaustive search approaches. However, due
to their reliance on black-box performance models, they
still need a substantial number of samples to construct an
accurate model, particularly in the presence of significant
execution time variations. In §5.1, we demonstrate how
incorporating knowledge of the underlying model, cou-
pled with a cost-aware sampling strategy, can effectively
minimize exploration costs without compromising the
quality of results.

3 MODELING SERVERLESS FUNCTIONS
Memory serves as the main configuration parameter for
most serverless offerings. The allocation of other resources
such as CPU and I/O shares depend on the memory config-
uration. This is unlike the traditional virtual machine (VM)
and container configurations, where various resource ratios
are available. AWS Lambda, for example, allocates CPU in
proportion to the amount of memory in such a way that at
1,769MB, a function has the equivalent of one vCPU [6]. As
a result, the performance of a serverless application depends
heavily on the choice of memory value, even though the
application might not be memory-intensive itself. Even after
the function receives all its required resources, increasing the
memory size leads to fewer co-tenants, reducing the noisy
neighbor effects and slightly improving performance.

Prior work treats serverless functions’ behavior as black-
box [1, 22, 60]. We leverage the one-dimensional configura-
tion space of serverless functions, modeling performance and
cost as a function of memory. As we show later in the paper,
such a model can simplify the configuration exploration.

3.1 Modeling Execution Time and Cost
The cost of running a serverless function consists of constant
request cost, which is independent of the function’s execu-
tion, and capacity cost (§2.1). The capacity cost depends on

SoCC ’23, October 30–November 1, 2023, Santa Cruz, CA, USA Arshia Moghimi, Joe Hattori, Alexander Li, Mehdi Ben Chikha, and Mohammad Shahrad

0 500 1000 1500 2000 2500 3000
Memory (MB)

101

102

103

104

105

Bi
lle

d
Ex

ec
ut

io
n

Ti
m

e
(m

s)

Chrome Video Image-Recognition Java-S3 Formplug Markdown PyAES

0 500 1000 1500 2000 2500 3000
Memory (MB)

10−6

10−5

10−4

Co
st

 ($
)

Figure 3: Execution time and cost of different serverless applications. Each line indicates the average of the data
for that benchmark. (Execution time and cost are in log scale.)

the amount of configured memory and the execution du-
ration. The execution time of a function itself depends on
the memory size (𝑚), which determines a number of other
resources, as mentioned earlier:

𝐶𝑜𝑠𝑡 (𝑚) ∝𝑚 × 𝐸𝑥𝑒𝑐𝑇𝑖𝑚𝑒 (𝑚) (1)

Modeling either the cost function or the execution time for
a serverless function, we can reason about rightsizing it. In
this section, we investigate whether either can be accurately
and reliably modeled by a family of mathematical functions.
For this, we gathered an extensive number of execution logs
from seven different serverless functions on AWS Lambda:
(1) Chrome-Screenshot [3]: Written in JavaScript, it takes

the screenshot of a headless Chrome browser for a
given URL and saves it as a file with given display size.

(2) Formplug [31]: An HTML form forwarding service
written in JavaScript.

(3) Image-Recognition [15]: A Python ML inference appli-
cation classifying an input image uploaded to a bucket.

(4) Java-S3 [8]: A Java application that reads an image
from an S3 bucket, shrinks it, and saves it in the bucket.

(5) Markdown-to-HTML [48]: A Python script that con-
verts Markdown to HTML.

(6) PyAES [32]: AES block cipher calculation in Python.
(7) Video-Processing [15]: A Python script that adds a

watermark to a given video and converts it to a GIF.
We chose benchmarks written in Python, Node.js, and Java

as they are the most widely used languages in AWS Lambda,
accounting for nearly 90% of functions as of 2021 [18]. These
benchmarks have various characteristics that enable us to
evaluate our ideas in a number of different scenarios. For
instance, Formplug is a lightweight benchmark that requires
minimal computations. It performs sufficiently fast even

with the minimum allocated memory (128MB). On the con-
trary, Chrome-Screenshot and Video-Processing benchmarks
are computationally intensive, exploit parallelism, and have
longer execution durations. They require a minimum of
512MB of memory to successfully execute. Furthermore,
these two benchmarks, alongside Formplug, make external
network calls during execution. These include opening a
webpage, downloading files from external storage, and send-
ing emails, respectively. PyAES and Markdown-to-HTML
benchmarks require moderate computing power and do not
involve any external communication.

We incrementally configured each benchmark’s memory
and collected the billed execution time and cost for each
invocation using a fixed input. We discuss how it is possible
to handle variable inputs in §5.2. To account for the varia-
tions in the cloud, we sampled each memory configuration
more than 100 times. We collected the execution time and
cost data multiple times a day over the span of two weeks
to compensate for diurnal and hourly variations [45]. Fig-
ure 3 shows the result of this experiment. As expected, due
to the resource allocation scheme of serverless functions,
increasing memory decreases the execution time for all the
functions. The degree of decrease, however, depends on the
function’s characteristics. The cost of running the function,
on the other hand, does not follow any specific trends.
We used the OriginPro [38] data analysis tool to check

the fitness of more than two hundred built-in mathematical
functions against data collected for execution time and cost.
For simplicity, we categorized different functions of the same
family under the same name, for example, quadratic and cu-
bic functions are categorized under the Polynomial family,
and exponential functions with different degrees all fall un-
der the Exponential family. To enhance result differentiation,

Parrotfish: Parametric Regression for Optimizing Serverless Functions SoCC ’23, October 30–November 1, 2023, Santa Cruz, CA, USA

Chrome-Screenshot Formplug Image-Recognition Java-S3 Markdown-to-HTML PyAES Video-Processing
Fit Family Δ𝐵𝐼𝐶 MAPE Family Δ𝐵𝐼𝐶 MAPE Family Δ𝐵𝐼𝐶 MAPE Family Δ𝐵𝐼𝐶 MAPE Family Δ𝐵𝐼𝐶 MAPE Family Δ𝐵𝐼𝐶 MAPE Family Δ𝐵𝐼𝐶 MAPE

Best Fit Poly 0 1.13 Exp 0 1.02 Exp 0 7.69 Exp 0 1.27 Exp 0 1.95 Exp 0 3.90 Poly 0 1.56
2nd Best Exp 44 1.29 Poly 128 2.18 Log 532 15.52 Log 280 2.94 Poly 142 17.48 Poly 119 17.80 Exp 36 0.41
3rd Best Asymp 158 1.63 Asymp 289 2.03 Poly 567 10.67 Asymp 518 10.07 Asymp 488 7.30 Asymp 312 7.87 Recip 556 2.74
4th Best Recip 276 2.48 Log 349 1.22 Asymp 705 15.18 Poly 611 11.72 Recip 565 18.86 Recip 484 21.67 Asymp 605 2.57
5th Best Log 476 1.04 Recip 656 4.14 Recip 727 10.36 Recip 491 13.13 Log 918 37.74 Log 764 37.33 Log 789 5.07

Table 2: Top five families of functions for modeling billed execution time of benchmark serverless functions on
AWS Lambda. We use the MAPE (lower is better) and BIC (lower is better) metrics to evaluate model fitness. (Poly:
Polynomial, Exp: Exponential, Asymp: Asymptotic, Recip: Reciprocal, Log: Logarithmic)

Chrome-Screenshot Formplug Image-Recognition Java-S3 Markdown-to-HTML PyAES Video-Processing
Family Δ𝐵𝐼𝐶 MAPE Family Δ𝐵𝐼𝐶 MAPE Family Δ𝐵𝐼𝐶 MAPE Family Δ𝐵𝐼𝐶 MAPE Family Δ𝐵𝐼𝐶 MAPE Family Δ𝐵𝐼𝐶 MAPE Family Δ𝐵𝐼𝐶 MAPE

Best Fit Poly 0 0.88 Linear 0 1.05 Exp 0 3.77 Exp 0 1.08 Poly 0 1.55 Poly 0 2.01 Poly 0 0.33
2nd Best Sine 34 1.26 Exp 1 1.04 Rational 17 3.18 Sine 229 1.51 Sine 12 1.52 Sine 36 2.01 Exp 37 0.38
3rd Best Exp 124 1.65 Poly 5 1.08 Poly 45 2.44 Poly 27 1.52 Exp 277 1.74 Exp 53 2.10 Sine 38 0.38
4th Best Asymp 258 2.04 Log 1076 2.09 Asymp 60 3.40 Recip 469 3.68 Recip 429 5.42 Recip 346 4.65 Recip 407 1.37
5th Best Log 271 1.14 Recip 1298 74.59 Log 70 2.21 Linear 538 5.03 Linear 568 8.31 Linear 515 8.06 Linear 434 1.48

Table 3: Top five families of functions for modeling cost of benchmark serverless functions on AWS Lambda.
Like before, we use the MAPE (lower is better) and BIC (lower is better) metrics to evaluate model fitness. (Poly:
Polynomial, Exp: Exponential, Asymp: Asymptotic, Recip: Reciprocal, Log: Logarithmic)

we excluded linear functions from the polynomial family cat-
egorization. Tables 2 and 3 show the five best-fitting families
of functions for each benchmark’s execution time and cost.
We used two metrics to identify the families of functions
that best fit our data. The first metric is Mean Absolute Per-
centage Error (MAPE). MAPE is a measure of the accuracy
of a forecast model [20] and is defined as:

𝑀𝐴𝑃𝐸 =
100
𝑛

𝑛∑︁
𝑖=1

|𝐴𝑖 − 𝐹𝑖

𝐴𝑖

|, (2)

where 𝐴𝑖 and 𝐹𝑖 are the actual and forecast values, respec-
tively, and 𝑛 is the number of fitted points. Lower MAPE
value depicts a better forecast.

We also use the Bayesian Information Criterion [46]metric
to incorporate both goodness of fit and model complexity.
BIC values in themselves are not interpretable and are only
for comparing different models fitted to the same data. Hence,
we compare 𝐵𝐼𝐶 values in the table as

Δ𝐵𝐼𝐶𝑖 = 𝐵𝐼𝐶𝑖 − 𝐵𝐼𝐶𝑚𝑖𝑛, (3)

with 𝐵𝐼𝐶𝑚𝑖𝑛 being the minimum BIC in each column. Δ𝐵𝐼𝐶
depicts the difference in the goodness of fit between differ-
ent models. The larger the Δ𝐵𝐼𝐶 value in the table, the less
plausible its corresponding model is at being the best approx-
imating model. The results shown in Tables 2 and 3 show
high accuracy for the models and demonstrate the feasibility
of modeling the execution time and cost.

3.2 Sample-Limited Model Performance
In §3.1, we used millions of data points to search for the
underlying models of execution time and cost. We were in-
terested in determining the underlying average models. In re-
ality, however, collecting that much data is not feasible when
rightsizing every function due to substantial cost overhead.

More importantly, rightsizingmay be needed frequently with
any code change, library update, or workload change. Col-
lecting 100 samples for thousands of memory configurations
will be both costly and time-consuming. The question we
pose here is as follows: Can the parameters for the models
identified in the previous subsection be robustly trained with a
limited number of samples?
To evaluate the resilience of different fitting functions

when using limited samples, we select five random samples
from each benchmark’s data and use only those to train the
fitting functions that exhibited the highest accuracy in §3.1.
We then compare these poorly fitted functions against the
original full dataset and measure theMAPE values. To ensure
statistical significance, we repeat this process 100 times for
each benchmark to consider different random scenarios.

Figure 4 shows the cumulative distribution function (CDF)
of MAPE values for each benchmark. For modeling execu-
tion time, the exponential family of functions provided the
best fit to the full dataset (Table 2) and continues to deliver
superior performance with partial data here, too. On the con-
trary, for modeling cost, the polynomial family of functions
provided the best fit to the full dataset (Table 3), but exhibits
significantly inferior relative fit performance compared to
other models. This discrepancy is in part due to the different
nature of the cost and execution time functions. As depicted
in Figure 3, the average execution time is monotonically
decreasing, while the cost function has varying patterns.
As described in §3.1, modeling either of execution time

or cost would be sufficient, as they are dependent functions.
Given the consistent superiority of estimating the execution
time with exponential functions, whether with full or partial
data, we will use the execution time model in the subsequent
sections. The cost can be predicted using the execution time
model, with the pricing details provided in §2.1.

SoCC ’23, October 30–November 1, 2023, Santa Cruz, CA, USA Arshia Moghimi, Joe Hattori, Alexander Li, Mehdi Ben Chikha, and Mohammad Shahrad

0.00

0.25

0.50

0.75

1.00

CD
F

(E
xe

c
Ti

m
e)

Chrome Formplug Image-Recognition Java-S3 M2HTML PyAES Video-Processing
Asymptotic Polynomial Exponential Reciprocal

101 102

MAPE (%)

0.00

0.25

0.50

0.75

1.00

CD
F

(C
os

t)

Chrome

101 102 103

MAPE (%)

Formplug

101 102 103

MAPE (%)

Image-Recognition

101 102

MAPE (%)

Java-S3

101 102

MAPE (%)

M2HTML

101 102

MAPE (%)

PyAES

100 101 102

MAPE (%)

Video-Processing

Polynomial Exponential Linear Sine

Figure 4: Distribution of MAPE values for the best fitting functions given only 5 data points.

Figure 4 also reveals another insight: compute-intensive
functions such as Video-Processing and Image-Recognition
exhibit a high level of accuracy in the resulting models. On
the other hand, for short-lived functions like PyAES and
functions that rely on third-party APIs such as Formplug,
the data shows considerable variation, and all fitted functions
perform below expectations. This highlights the limitation of
relying solely on random sampling when building a reliable
model and motivates the need for a better sampling strategy.
Some recent studies have assumed suitability of expo-

nential functions to model the relation between allocated
memory and execution time of serverless functions [57], or
observed it with limited data and without comparison to
other families of functions [1]. Researchers have reported
the same relation between resource allocation and execution
time for serverless queries of SCOPE big data workloads at
Microsoft [40]. In our search for the best performance and
cost models, we took a data-driven approach, using millions
of execution logs and evaluating the fitness of more than two
hundred families of functions. To the best of our knowledge,
it is the first work presenting a characterization-driven mod-
eling of serverless functions at this scale. Our results confirm
observations of these prior studies and provide more con-
crete evidence to the community. In §5.7 we will show that
this approach can also be used to model the tail execution
time of serverless functions.

Intuitively, as resource allocation is bound to the choice of
memory, when the memory size of a function is decreased,
there is an increase in the function’s execution time. Con-
versely, increasing the memory allocation provides the func-
tion with more resources, which can potentially reduce the
execution time. However, there is a point where the func-
tion cannot effectively utilize the excess resources, leading
to a plateau in the execution time. For example, the exe-
cution time of a single-threaded compute-bound function

would have little improvement for memory allocation be-
yond 1,769MB of memory, which maps to 1vCPU in AWS
Lambda. Exponential functions are well-suited to estimate
such behavior with few model parameters.

Finally, we do not incorporate the input of each function
in our model, as prior work has shown that the correla-
tion between input size/type and resource usage is highly
function-dependent and may not exist [36].

3.3 Significance of Sampling Strategy
We used random sampling in §3.2 and observed moderate
results for many benchmarks. We now investigate the poten-
tial for improving model accuracy under limited samples by
using an active sampling technique. In particular, an alterna-
tive approach to sampling is binary search. In binary search
we select search space ends, midpoint, divide the space, and
repeat until sufficient samples are gathered. For example, for
the default memory range for AWS Lambda, which spans
from 128MB to 3,008MB1, the binary search sampling strat-
egy would sample the configurations in the following order:
128, 3008, 1568, 848, and 2288. This method provides a sys-
tematic and efficient way to explore the search space. Note
that the order of samples does not affect the fit accuracy, as
we do the fitting after gathering all samples.

As an experiment, we selected five samples from the en-
tire dataset for each benchmark, just like in the previous
subsection. However, this time we also used binary search.
The process was repeated 100 times. Figure 5 illustrates the
CDF of the MAPE values obtained from these experiments.
The results indicate that using the same number of samples,
binary search leads to much more reliable models compared
with the random sampling. From an alternative perspective,
it shows that binary search requires fewer samples to achieve
1Developers can request a quota increase up to 10,240MB. However, server-
less functions’ memory usage is typically within the default range [50].

Parrotfish: Parametric Regression for Optimizing Serverless Functions SoCC ’23, October 30–November 1, 2023, Santa Cruz, CA, USA

101 102 103

MAPE (%)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Chrome

101 102 103

MAPE (%)

Formplug

105 1010 1015

MAPE (%)

Java-S3

102 104 106

MAPE (%)

Image-Recognition

102 104

MAPE (%)

Markdown-to-HTML

101 102 103

MAPE (%)

PyAES

101

MAPE (%)

Video-Processing
Binary Search Random Sampling

Figure 5: Distribution of MAPE values for two sampling strategies.

the same model accuracy as random sampling. Requiring
fewer samples means a faster and more cost-effective right-
sizing process. The goal of this experiment was to emphasize
the significance of sampling strategy.

A major factor that has been ignored in our analysis so far
is that samples from different memory configurations have
different costs. A good sampling strategy should balance
the cost of exploration with the information gain from each
sample. In designing Parrotfish, we take these considerations
into account and leverage the knowledge on execution time’s
shape (exponential family of functions).

4 PARROTFISH
Let us apply the insights we gained from modeling execution
time and cost of benchmark serverless functions.

4.1 Online Parametric Regression
Parrotfish combines two seemingly obvious, yet novel ideas:
1) using execution timemodels instead of black-box optimiza-
tion to gather fewer samples, and 2) employing a cost-aware
sampling strategy. Parrotfish employs online parametric re-
gression. Online means that the decision of where and how
many samples to collect is based on the previous samples,
and parametric regression means that the samples collected
up to each point are fitted to a known function shape (expo-
nential in this case) to train the model parameters. In this
section, we walk the reader through the online parametric
regression process of Parrotfish and explain its components.

4.1.1 Initiating the sampling process. At first, Parrotfish has
no information about the target function. It needs at least a
few samples to be able to build a preliminary execution and
cost model. Exploring at least three memory configurations
is necessary to build an estimation of the decay factor for
the exponential execution time function. This is because the
most basic exponential decay function has three parameters
to be learned, 𝑏, 𝑁0, and 𝜏 below:

𝐸𝑥𝑒𝑐𝑇𝑖𝑚𝑒 (𝑚) = 𝑏 + 𝑁0 .𝑒
−𝑚
𝜏 (4)

If the user has not specified any constraints on the memory
range of the target function, initial memory values of 128MB,

1,024MB, and 3,008MB are used. These values are driven
by the binary search strategy (§3.3) on the default memory
configuration range for AWS Lambda (128MB - 3,008MB).
Once the first three initial memory values have been sampled,
an iterative process is triggered to determine the subsequent
memory size to explore or decide whether to terminate the
sampling process and present the results to the developer.

4.1.2 Leveraging the continuous nature of average execution
time function. The average execution time as a function of
allocated memory is a continuous function, i.e., it has no
discontinuities within the operational memory range. For
a continuous function, sampling a memory configuration
reveals valuable information regarding its surrounding con-
figurations. Particularly, this can be well leveraged as the
execution time is monotonic decreasing. For instance, we ex-
pect somewhat similar average execution time with 460MB
and 462MB configurations for a function, as long as the min-
imum memory requirement is less than the smaller value. As
such, sampling one, perhaps the cheaper one, would suffice.
On the other hand, inferring information about the 1000MB
configuration based on a sample at 460MB seems may be
a stretch. This qualitative insight can be modeled using a
belief function [51] over the search space (the range of pos-
sible memory values). The belief function is constant zero
before any configuration is explored. Upon exploring a con-
figuration, we can add a unit belief distribution centered
around that configuration to the belief function. Empirically,
we found a normal distribution with a standard deviation
of 200MB adequately represents the variation in acquired
knowledge. We evaluate the impact of this width of this unit
normal distribution in §5.6.

4.1.3 Choosing the next memory configuration to explore. At
each iteration, the optimal next exploration is at a memory
configuration that maximizes gain in belief with minimum
required exploration cost. A simple way to account for these
two factors is selecting the memory configuration 𝑚 that
minimizes the following joint objective function:

min
𝑚

𝑂𝑏 𝑗𝑒𝑐𝑡𝑖𝑣𝑒 (𝑚) = 𝐶𝑜𝑠𝑡 (𝑚) × 𝐵𝑒𝑙𝑖𝑒 𝑓 (𝑚) (5)

SoCC ’23, October 30–November 1, 2023, Santa Cruz, CA, USA Arshia Moghimi, Joe Hattori, Alexander Li, Mehdi Ben Chikha, and Mohammad Shahrad

Co
st

O
bj

ec
tiv

e

Be
lie

f min

Memory

Co
st

Be
lie

f

O
bj

ec
tiv

e min

New
Exploration

×

Memory Memory

Memory Memory Memory

Unit Belief

Ite
ra

tio
n
i

Ite
ra

tio
n
i+
1

Figure 6: Exploration Cost-Aware sampling strategy
in action. The red cross shows the value we have just
sampled and the red line shows where the normal dis-
tribution is added.

Intuitively, we need the next configuration to be selected
where both cost and belief are low. Figure 6 shows this pro-
cess in action, as well as how the belief function gets updated
after an exploration. As discussed earlier in the paper, the
capacity cost is a function of execution time and the invoca-
tion cost is not optimizable through rightsizing. Therefore,
effectively, we are optimizing for the following objective:

min
𝑚

𝑂𝑏 𝑗𝑒𝑐𝑡𝑖𝑣𝑒 (𝑚) = 𝑘×𝑚×𝐸𝑥𝑒𝑐𝑇𝑖𝑚𝑒 (𝑚)×𝐵𝑒𝑙𝑖𝑒 𝑓 (𝑚), (6)

with 𝑘 being the constant capacity cost defined by the cloud
providers. As we accumulate more samples, the execution
time model becomes more accurate (refer to §3).

4.1.4 Termination logic. In Figure 3, we demonstrated differ-
ent cost function shapes and variations. As Parrotfish should
be able to handle very different functions and explore each
with minimal samples count and cost, a fixed exploration
count for all functions cannot be used. Instead, the sampling
should be adaptively terminated based on the confidence
gained from prior samples. We leverage the belief distribu-
tion function described earlier to guide us in determining
when to terminate. As unit belief functions get added to the
belief function in each iteration, we check if the value of the
belief function at the cost-optimal configuration exceeds a
threshold (𝐵𝑡ℎ), and if so, we conclude the optimization pro-
cess. The insight is to make sure that our accumulated belief
for the recommended configuration is high enough. Empir-
ically, we found 𝐵𝑡ℎ equal to 2 to strike the right balance
between exploration cost and the improvement in locating
the cost-optimal configuration. We evaluate the impact of
using different termination thresholds in §5.5.

4.1.5 Adaptive sample count per exploration. In order to ac-
count for the high variability of serverless execution times,
Parrotfish employs adaptive sampling. At least two samples

are collected per explored memory configuration. If these
two samples show significant variability in their execution
times (with a coefficient of variation (CoV) greater than 0.05),
an additional sample is collected. This process is repeated
as long as the high CoV persists, but it stops once the maxi-
mum sample count per configuration is reached (3 by default,
tunable by the user).

4.1.6 Optional user constraints. The core objective of Par-
rotfish is to find the most cost-optimal configuration for
the target serverless function. However, cost is not the only
criteria developers care about. Parrotfish has two optional
constraints to broaden its applicability:

(1) Maximum Execution Time Constraint: To accom-
modate latency limitations, it is common for serverless
functions to have an upper threshold on their execution
time. To address this consideration, users have the option
to specify the maximum acceptable execution time for
the function when interacting with Parrotfish. Parrot-
fish leverages the execution time model to recommend a
configuration that minimizes cost while adhering to the
specified execution time constraint.

(2) Cost-Tolerance Best-Performance Constraint: Par-
rotfish is agnostic to the execution time of the serverless
functions and focuses solely on identifying the configu-
ration with the minimum cost. However, users have the
option to define a cost tolerance window to obtain the
most performant configuration within a specified range.
For example, if the user passes a cost tolerance window
of 5% to Parrotfish, the Recommendation Engine’s re-
sult will be the configuration with the least execution
time that incurs a cost no more than 5% higher than the
minimum cost. This approach enables users to strike a
balance between cost optimization and meeting perfor-
mance requirements within the specified tolerance.

4.1.7 Putting it all together. We have reviewed various de-
sign aspects of Parrotfish’s optimization strategy. Let us go
over the formulation of the optimization flow, shown in Algo-
rithm 1. The algorithm outlines the sequential steps involved
in the tool, beginning with obtaining the initial samples and
concluding with the termination of sampling and the return
of the final result. Figure 7 shows an overview of Parrotfish’s
components. The Recommendation Engine is at the heart
of Parrotfish, containing the optimization algorithm. It gets
the optimization settings as a configuration file from the
user. These settings include the function’s endpoint that the
user wants to optimize, a representative input, the user’s
cloud access keys (needed to collect logs and configure the
function), and the operating memory range of the function
if known. The Recommendation Engine, by default, finds
the configuration that minimizes the cost of running the

Parrotfish: Parametric Regression for Optimizing Serverless Functions SoCC ’23, October 30–November 1, 2023, Santa Cruz, CA, USA

Algorithm 1: Parrotfish’s Optimization Flow.
Input :constraints, payload
Output :minimum-cost memory
Function sample: set function’s memory and invoke,
updating belief values

Function curveFit: fits samples with the exp function

defaultMemoryRange = [128, 3008]
initialMemories = [128, 1024, 3008]
/* User-provided range alters defaults */

beliefValues, samples = [], []
samples += sample(initialMemories, beliefValues)
costModel, executionModel = curveFit(samples)
minCostMemory = argmin(costModel)
beliefPeak = beliefValues[minCostMemory]
while beliefPeak < terminationThreshold do

/* Default termination threshold is 2 */

nextSample = argmin(costModel × beliefValues)
samples += sample(nextSample)
costModel, executionModel = curveFit(samples)
minCostMemory = argmin(costModel)
beliefPeak = beliefValues[minCostMemory]

end
if maxExecutionTimeConstraint then

executionTimes = executionModel[memories]
filter = executionTimes < constraint
return argmin(costModel, filter)

end
if costToleranceWindowConstraint then

executionTimes = executionModel[memories]
filter = cost < min(costModel) + constraint
return argmax(executionTimes, filter)

end
return argmin(costModel)

Recommended
memory

e.g., 700MB

Recommendation
Engine

Parametric
Regressor

Serverless
Controller and

Monitor

(log retrieving,
function

invocation,
configuration

update)

Cloud
API

Pa
rro

tfi
sh

Function,
representative inputs,

and constraints

Sampler

Figure 7: High-level overview of Parrotfish.

serverless function, however, we allow the user to specify
optional constraints to get a configuration that meets certain
criteria. We explain these next.

4.2 Input Variability
Serverless functions are typically invoked with various in-
puts. Parrotfish allows developers to specify multiple inputs
representative of their production workload. Parrotfish then
builds execution time and cost models for each input. Using
these models, Parrotfish reports optimal per-input and ag-
gregate configurations. The aggregate recommendation uses
the weighted average cost model with the developer-defined
weights. For additional savings, developers can use the per-
input results as insight to deploy different versions of the
function and split the load.
Parrotfish can be used in different settings. If used by de-

velopers, it is up to them to identify representative inputs in
time periods that suit them and their end-users. If integrated
within a serverless platform, invocations can be statistically
sampled asynchronously. Ultimately, we focus on solving
each problem instance as efficiently as possible.

4.3 Practicality and Versatility
In designing Parrotfish, the usability, versatility, and relia-
bility of the tool was one of our primary concerns. These
aspects may not be particularly novel in terms of research.
However, we believe that the lack of attention paid to these
factors is the reason why developers tend to favor the use
of well-designed exhaustive search tools like AWS Lambda
Power Tuning [14], instead of more cost-optimal advanced
academic serverless rightsizing tools. In fact, when attempt-
ing to run some of the prior work on our benchmark func-
tions, we encountered several issues that served as valuable
lessons for our tool’s development.

One crucial aspect is determining the operational memory
range of functions. All existing tools require users to define a
working memory configuration [14], or assume that the func-
tion operates under all [1] or a predefined [22] set of memory
values. Parrotfish automatically determines the operating
memory range of the target function based on invocation
logs. In situations where out-of-memory errors or timeout
errors occur, the tool adjusts the lower bound of the memory
range search space. This allows graceful handling of error
scenarios and adapting the sampling process accordingly.

Parrotfish, unlike some other tools [22], does not require
any changes to the user’s code or the use of external libraries
to capture runtime behaviors. Instead, we leverage the cloud
provider’s log collection to retrieve the execution time of
the invoked function. This ensures a seamless optimization
experience for developers.
It is important to note that Parrtofish is designed for to-

day’s serverless offerings, which do not support configu-
ration knobs beyond memory. The memory configuration
dictates other resources. However, for future serverless sys-
tems with more knobs, Parrotfish can be extended by adding

SoCC ’23, October 30–November 1, 2023, Santa Cruz, CA, USA Arshia Moghimi, Joe Hattori, Alexander Li, Mehdi Ben Chikha, and Mohammad Shahrad

Chrome
Formplug

Markdown
PyAES Video

10−5

10−4

10−3

10−2
Co

st
 ($

)
Exploration Cost

Chrome
Formplug

Markdown
PyAES Video

10−6

10−5

10−4

Cost of Suggested Memory

Rightsizing Tool
Power Tuning
COSE
Sizeless
Parrotfish

Figure 8: Parrotfish’s exploration cost and suggested configurations’ real cost compared to Power Tuning, COSE,
and Sizeless. Sizeless only supports Node.js functions. Cost is in log scale.

more variables to the model, and changing the sampling
strategy to search along multiple dimensions.

5 EVALUATION
We chose AWS Lambda as our serverless provider and de-
ployed our benchmarks on this platform. Parrotfish interacts
with Lambda functions, retrieving their execution logs to an-
alyze and optimize their performance. Parrotfish is developed
in Python and is platform-independent. For the experiments
presented in this paper, we ran Parrotfish on an Ubuntu 22.04
machine. We have also used Parrotfish on an Apple Silicon
Mac without any issues. For brevity, we used five of the seven
benchmarks introduced in § 3.1 in our experiments.

5.1 Effectiveness of Parrotfish
To evaluate the effectiveness of Parrotfish, we compared it
with three state-of-the-art tools:

(1) AWS Lambda Power Tuning [14]: This tool is the recom-
mended tool by AWS to rightsize serverless functions [7].
By default, it employs a process of sampling six prede-
termined memory configurations (128, 256, 512, 1,024,
1,536, and 3,008MB) ten times, ultimately identifying the
configuration from the presets that offers the lowest aver-
age cost. This tool belongs to the category of automated
exhaustive search tools.

(2) COSE [1]: Bayesian optimization (BO) has been used by
prior work for rightsizing serverless functions [1, 60].
With every sample, BO tries to maximize the confidence
in its model. COSE is a complete serverless configuration
tool using BO. We compare Parrotfish against it.

(3) Sizeless [22]: Sizeless trains a machine-learning model on
thousands of synthetic functions to model the execution
time. When applied to real-world functions, it uses this
trainedmodel to predict the execution time for previously
unseen memory configurations, relying on samples from
just a single memory configuration.

We ran each tool ten times and collected its optimization
results and exploration costs.
Comparison baseline deployment notes: Sizeless re-

quires a pre-trained model to provide configuration recom-
mendations. This is unlike other tools that learn for each
function independently.We use the extensively trainedmodel
open-sourced by the Sizeless authors [21], to be faithful to
their work. Additionally, the implementation of Sizeless re-
quires code change and using a wrapper that gathers runtime
data for the target. This wrapper, however, exclusively sup-
ports functions written in Node.js. We were thus limited to
evaluate Sizeless only for our Node.js benchmarks, Chrome
and Formplug. When it came to our demanding benchmarks
that require a minimum of 512MB of memory (Chrome and
Video), Sizeless, COSE, and Power Tuning did not work out of
the box. This is because they cannot handle out-of-memory
and timeout errors automatically, as discussed in §4.3. To
overcome this issue, we had to manually set the memory
range for them to obtain results for these benchmarks.

5.1.1 Exploration Cost. Figure 8 shows the exploration cost
and the cost of the function with the suggested configuration
for Parrotfish, COSE, Sizeless, and Power Tuning. Parrotfish
demonstrates significantly lower exploration costs compared
to Power Tuning, Sizeless, and COSE, with a geometric av-
erage reduction of 9.96×, 2.70×, and 1.81×, respectively. We
used geometric mean instead of arithmetic mean as we are
averaging the reductions for each benchmark [29].
Power Tuning uses 10 invocations per configuration to

mitigate cloud variations, resulting in more consistent con-
figurations but higher exploration costs. Sizeless uses a total
of 50 invocations for its inference process. In the case of
Chrome, these 50 samples fall within the expensive segment
of the application, resulting in a significant exploration cost.
Conversely, in Formplug, these 50 samples happen to be po-
sitioned close to the minimum cost, resulting in a reduced
exploration cost compared to Powertuning and COSE, de-
spite having a larger number of samples. Note that sizeless

Parrotfish: Parametric Regression for Optimizing Serverless Functions SoCC ’23, October 30–November 1, 2023, Santa Cruz, CA, USA

relies on a pre-trained model. We did not consider the cost
of training the model in the exploration cost. In reality, the
exploration cost of sizeless will be much more substantial.
COSE only samples once for each configuration, and re-

quires additional explorations to boost model confidence,
especially for highly variable functions like Formplug. In
contrast, the white-box model of the execution time, limits
the changes of the function, enabling it to converge with
fewer explorations (often converging with just four samples
in most benchmarks). Moreover, Parrotfish is more consis-
tent in terms of exploration costs compared to COSE.

Parrotfish outperforms Power Tuning, Sizeless, and
COSE in terms of exploration cost, achieving reduc-
tions of 9.96×, 2.70×, and 1.81×, respectively.
Cheaper rightsizing enables and encourages frequent re-

configurations, leading to compounded long-term savings.

5.1.2 Suggested Memory Cost. We have made several obser-
vations regarding the cost of the suggested memory config-
urations. Firstly, for benchmarks where the minimum-cost
configuration closely aligns with the previously explored
samples, all the tools provide similar suggestions. For in-
stance, the minimum-cost configuration for Formplug is 128
MB, a value that all tools except Sizeless have sampled during
their exploration.

Secondly, for benchmarks with minimum-cost configura-
tions that differ from the previously sampled configurations,
our system (Parrotfish) performs slightly better. For instance,
Markdown’s optimal memory configuration is around 1100
MB, and Parrotfish accurately captures this, resulting in cost
reductions of 8.80% and 1.52% compared to Power Tuning
and COSE, respectively.
In case of high variability, such as Chrome-Screenshot,

COSE, Sizeless, and Parrotfish yield comparable results, but
their suggestions are generally inferior to those of Power
Tuning. This is because Power Tuning takes more samples,
enabling it to reduce observation noise.

On average (geometric), our approach reduces the cost of
running benchmarks by 47.83% and 3.76% compared to Size-
less and COSE, respectively. However, compared to Power
Tuning, our suggested cost is slightly worse by 0.18%.

Parrotfish finds optimal or near-optimal configurations
for all the benchmarks, and suggests comparable or
better configurations compared to other tools.

5.2 Handling Input Variability
An often overlooked factor in any optimization tool is the
impact of input on the execution time and cost of a serverless
function. To illustrate this point, we use the Video-Processing
benchmark. Video-Processing function accepts a video file

Memory (MB)

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Co
st

 ($
)

1e−4

Cost Tolerance Window

720p (Uncompressed)
720p (Compressed)
240p

500 1000 1500 2000 2500 3000
0
2
4
6
8

10
12
14
16

Ex
ec

ui
tio

n
Ti

m
e

(s
)

Cost-Tolerance Best-Performance Constraint
Maximum Execution Time Constraint
Cost Optimal (No Constraint)

Figure 9: Different inputs to the same function affect
the cost optimal configuration ("v" markers). Users can
express optional constraints to communicate execu-
tion time limit ("o" markers), or their cost optimality
tolerance to gain performance ("x" markers).

as input, applies a watermark to the video, and converts it
to GIF format. As the video quality improves, the complex-
ity of the task also increases, necessitating more resources.
Figure 9 demonstrates this growth in action. When process-
ing a low-quality 240p video, the function requires minimal
resources, and the increase in cost outweighs the perfor-
mance gains. However, as the video quality rises, additional
resources enhance the function’s performance substantially,
pushing the minimum-cost configuration to higher memory
values. Parrotfish leverages user-provided input to sample
the function and construct a model. When presented with
various video qualities as individual inputs, Parrotfish can
identify the minimum-cost configuration, as indicated by
the caret symbols in the figure. Parrotfish supports weighted
inputs that enables developers to replicate real-world inputs
and minimize the average cost of running the function.
To demonstrate how Parrotfish supports multiple inputs,

we used the Video-Processing and Java-S3 benchmarks. We
defined two sets of two inputs consisting of videoswith differ-
ent qualities for Video-Processing and one set of two inputs
containing images with various sizes for Java-S3. Table 4
summarizes the results of this experiment. Parrotfish reports
both per-input and aggregate optimized configurations.

SoCC ’23, October 30–November 1, 2023, Santa Cruz, CA, USA Arshia Moghimi, Joe Hattori, Alexander Li, Mehdi Ben Chikha, and Mohammad Shahrad

Function Input Set Per Input Optimized
Memory Config

Aggregate
Memory Config

Video 100 KB 240p Video 512MB 1226MB265MB HD Video 1331MB

Video 100 KB 240p Video 512MB 512MB3MB 360p Video 512MB

Java-S3 21 KB Image 1501MB 128MB11MB Image 128MB

Table 4: Parrotfish optimizes per-input function costs
and reports the aggregate optimal configuration based
on provided input weight (equal weights used here).

5.3 User Constraints
In §4.1.6, we discussed the two optional constraints that de-
velopers can use to communicate goals beyond cost optimiza-
tion: (1) Maximum Execution Time, which sets a limit on the
maximum allowable execution time for the suggested con-
figuration, and (2) Cost-Tolerance Best-Performance, which
aims to identify the most performance configuration within
a specified tolerance from the optimal cost.
To demonstrate the maximum execution time constraint,

we use the Video-Processing benchmark with a high-quality,
uncompressed 720p input video file. For this input, the bench-
mark exhibits a fourfold difference between its minimum
and maximum execution times in operable memory range.
As an example scenario, this function might be used in a
video serving platform, where the team aims for an average
latency of no more than 5 seconds (the blue horizontal line).
With this large input, the cost optimal configuration is at
1,300MB. That would result in an average execution time of
∼7 seconds (shown as blue "v" markers). Using the maximum
execution time constraint, Parrotfish identifies the configu-
ration that meets the user-specified 5-second execution time
with the lowest cost: 1,870MB (blue circle markers).

To demonstrate the cost-tolerance best-performance con-
straint, we use the same benchmark with a compressed 720p
video (size reduced). The cost of this function exhibits a
relatively small variation, as depicted by the green line in
Figure 9, while its execution times vary significantly, with a
fivefold difference. In the absence of any constraints, Parrot-
fish identifies the cost optimal memory of 1,000MB for this
function, resulting in an execution time of ∼5.5 seconds, as
indicated by the green "v" markers. By defining a 10% cost
tolerance (shown highlighted region), Parrotfish searches
for the lowest execution time within 90-110% of the mini-
mum cost. It suggests an optimal memory configuration of
2,400MB, leading to a 2.4-second execution time, which cor-
responds to a 2.29-fold decrease in execution time with only
a 10% cost increase, as represented by green cross markers.

5.4 Cost-Aware Sampling Strategy
To show the effectiveness of our cost-aware sampling strat-
egy, we conducted a comparative analysis against the random

Chrome
Formplug

Markdown
PyAES

Video
0.00

0.25

0.50

0.75

1.00

1.25

No
rm

al
ize

d
Co

st
 (t

o
Ra

nd
om

) Exploration Cost

Chrome
Formplug

Markdown
PyAES

Video
0.8

0.9

1.0

1.1

1.2
Cost of Suggested Memory

Random Binary Search Exploration Cost Aware

Figure 10: Parrotfish’s cost of suggested memories and
exploration cost using different sampling strategies. Bi-
nary search incurs a higher exploration cost, while ran-
dom search suggests suboptimal configurations. Note
that the y-axis range for the right subplot is magnified.

and binary-search approaches, introduced in §3.3. We evalu-
ated both the exploration cost and the cost of the suggested
memory. Figure 10 shows the result of this comparison. We
conducted 100 iterations of the experiment, using five sam-
ples for each. For a fair comparison, we disabled the dynamic
sampler (§4.1.5) while sampling, so each sampling strategy
invoked the benchmark function exactly five times. Using
the cost-aware sampling strategy, we observed a geometric
average reduction of 9.36% and 13.18% in exploration costs
compared to random sampling and binary search, respec-
tively. This reduction was achieved without compromising
the quality of suggested cost, with an improvement of 2.89%
compared to random sampling and only 0.74% worse than
the binary search strategy.
It is important to note that model accuracy does not al-

ways yield proportional cost savings. The cost functions for
Chrome and Video-Processing benchmarks are almost flat
(Figure 3), so greater memory recommendation noise is tol-
erable. Conversely, Markdown and PyAES have dominant
minima, for which the higher model accuracy leads to lower
average costs in Figure 10.

5.5 Termination Logic Sensitivity Study
The decision of when to conclude the exploration process is
about hitting a balance between accuracy and exploration
cost. Exploring too few configurations reduces the explo-
ration cost, but may lead to premature parametric regression,
and thus inaccurate recommendations. On the other hand,
excessive explorations can needlessly increase the cost of
exploration. As described in §4.1.4, Parrotfish terminates
the exploration loop when the belief function at the recom-
mended configuration exceeds a threshold (𝐵𝑡ℎ). Here, we
evaluate the impact of using different termination thresholds.
Figure 11 showcases the impact of using different belief

thresholds. Using a threshold of 1 minimizes the exploration

Parrotfish: Parametric Regression for Optimizing Serverless Functions SoCC ’23, October 30–November 1, 2023, Santa Cruz, CA, USA

Chrome
Formplug

Markdown
PyAES

Video
0

2

4

6

8

10

No
rm

al
ize

d
Co

st
 (t

o
B t

h
=

1)

Exploration Cost

Chrome
Formplug

Markdown
PyAES

Video
0.8

0.9

1.0

1.1
Cost of Suggested Memory

Termination Belief Threshold (Bth)
1 2 4 6

Figure 11: Effect of different termination belief thresh-
olds. Increasing the termination threshold signifi-
cantly affects the exploration costs. Note that the y-
axis range for the right subplot is magnified.

cost. However, the suggested configurations will not opti-
mal for three of the benchmarks, Formplug, Markdown-to-
HTML, and PyAES. Increasing the threshold allows for gath-
ering more samples and subsequently recommend higher
quality configurations. However, increasing the threshold
beyond 2 substantially increases the exploration cost, with
marginal improvement in the suggested configurations. This
is why we chose a default 𝐵𝑡ℎ of 2. This parameter is tunable
by the user, in case they prioritize higher quality estimates
over exploration cost.

5.6 Unit Belief Sensitivity Study
In §4.1.2 we discussed that the continuity of the average
execution time function allows us to infer some information
on the surroundings of the sampled configuration. The relia-
bility of this information inference decreases as the distance
from the sampled configuration increases. That is why the
unit belief function has a normal (Gaussian) distribution.
The choice of the standard deviation (𝜎) for this unit belief
distribution affects the sampling process. Figure 12 shows
the impact of using different 𝜎 values. A narrower unit belief
distribution (smaller 𝜎) translates into more exploration to
gain the required confidence in the optimal configuration.
On the other hand, a wider unit belief distribution (larger
𝜎) enables inferring more information on configurations far-
ther from each sampled memory, potentially leading to a
premature belief in the optimal memory configuration. We
chose 200MB for 𝜎 as it hits a balance between exploration
cost and recommendation quality.

5.7 Tail Execution Time Model Accuracy
The application of execution time models in this paper has
been for function rightsizing. Given that the capacity cost of
serverless functions is determined by the aggregate monthly
usage, the appropriate variant of execution time to model in

Chrome

Formplug

Markdown
PyAES

Video
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

No
rm

al
ize

d
Co

st
 (t

o
σ=

50
)

Exploration Cost

Chrome

Formplug

Markdown
PyAES

Video
0.75

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15
Cost of Suggested Memory

Standard Deviation of Unit Belief (σ)
50 100 200 400

Figure 12: Effect of different standard deviations (𝜎) for
the unit belief distribution. Increasing 𝜎 reduces the
exploration cost, but causes subpar recommendations.
The y-axis range in the right subplot is magnified.

Benchmark Chrome Formplug Image Java-S3 Markdown PyAES Video
MAPE 2.71 11.26 12.53 2.33 8.95 11.54 2.27

Table 5: The exponential function had the best fit to the
95th percentile of execution time data. MAPE values
indicate a highly accurate fit for all of our benchmarks.

the context of rightsizing is average execution time. This is
because multiplying the average cost of an invocation by the
number of invocations yields the aggregate monthly cost.
In this section, we take a step back and further explore the
modeling discussion of §3 outside the context of Parrotfish.
In particular, we want to knowwhich family of functions can
decently model the tail execution time. While not applicable
for rightsizing, this information can be used by other re-
searchers in designing better scheduling and load-balancing
in serverless settings to suite latency-critical applications.

We used the data we had gathered for sampling and used
the OriginPro [38] tool again to all supported families of
functions. This time, we picked the 95th sample of each con-
figuration (out of 100 samples), and used these values for
fitting. The MAPE values for the most optimal fitting func-
tion are presented in Table 5, which again turned out to be
the exponential function.

6 RELATEDWORK
Rightsizing cloud resources have been studied previously
in the context of VMs. Rightsizing VMs is a different prob-
lem to solve, as the search space has more dimensions, but
fewer configurations per dimension compared with server-
less functions. Some of the prominent work on rightsizing
VMs includes CherryPick [2] and PARIS [58], which both use
black-box learning algorithms to estimate the performance
model of a VM. Ernest [55], is another approach that uses a
linear model to estimate the performance of the jobs running
on VMs under different configurations.

SoCC ’23, October 30–November 1, 2023, Santa Cruz, CA, USA Arshia Moghimi, Joe Hattori, Alexander Li, Mehdi Ben Chikha, and Mohammad Shahrad

Tool/Study Methodology Primary Objective
Open-
Source
Tool

Aquatope [60] Bayesian Optimization Resource Management ✗

AWS Compute Optimizer [4] Machine Learning Workload Rightsizing ✗

COSE [1] Bayesian Optimization Cost Minimization ✓

CPU-TAMS [17] CPU Time Accounting Cost Minimization ✗

Lachesis [52] Supervised Learning Cost Minimization ✗

ORION [35] Linear Interpolation E2E Latency Estimation ✓

Power Tuning [14] Automated Search Cost Minimization ✓

SAAF [16] CPU Time Accounting Performance Prediction ✓

Sedefoğlu et al. [47] Regression Analysis Cost Minimization ✗

Sizeless [22] Multi-Target Regression Cost Minimization ✓

SLAM [43] Automated Search SLO Compliance ✗

StepConf [57] Global-Cached Most Cost-
effective Critical Path Cost Minimization ✗

Parrotfish (this work) Parametric Regression Cost Minimization ✓

Table 6: Overview of serverless optimization studies.

Additionally, cloud providers offer services to help devel-
opers rightsize their resources. For example, AWS Compute
Optimizer [4] is a tool offered by AWS, leveraging historical
utilization data and ML to rightsize cloud resources (includ-
ing serverless functions). However, users do not have control
over triggering these services, they require many logs, and
do not allow expression of complex objectives.

Table 6 summarizes the body of work pertaining to right-
sizing serverless functions. Some are not usable by practi-
tioners due to the absence of open-source tools or artifacts.
Parrotfish has been extensively tested and is designed for
versatile operation with minimal requirements for develop-
ers. Next, we detail the objectives and methodologies used
by various serverless rightsizing systems.
Exhaustive search: AWS Lambda Power Tuning [14]

is a widely adopted, automated exhaustive search tool. It
leverages a predefined set of memory configurations to iden-
tify the most optimal one. Being endorsed by AWS [7], it
is a prominent serverless rightsizing tool used by develop-
ers [27, 37, 53]. Sedefoğlu et al. [47] also sample fixedmemory
configurations in their paper. They suggest using regression
analysis to estimate serverless function execution time for
cost optimization, without going into specifics. The authors
of SLAM [43] propose using a max heap data structure to
reduce the time complexity of automated search. Compared
to these exhaustive search strategies, Parrotfish offers a sig-
nificant advantage by having lower exploration cost.
Bayesian Optimization (BO): COSE [1] is a black-box

learning-based approach that uses BO to model the perfor-
mance of serverless functions and rightsize them. BO has
also been recently used to prioritize QoS and uncertainty
considerations within the platform [60]. In contrast to BO
approaches, Parrotfish employs white-box learning, wherein
the high-level model is known, and only model parameters
need to be trained online. This prevents overfitting, and leads
to improved recommendations with fewer samples.

Pre-trained models + profiling: Sizeless [22] represents
an alternative learning-based approach. It gathers runtime

data from a wide range of synthetic functions and builds
a regression model to recommend configurations for new
functions using only a limited number of profiling runs. CPU-
TAMS [17] and SAAF [16] adopt a similar concept, but with
less exhaustive metrics. Unlike Parrotfish, these tools require
code modifications or the use of custom libraries to gather
runtime metrics. This adds extra effort and may not support
all programming languages, thus limiting their applicability.
Additionally, these tools often rely on large trained models,
resulting in significant cost overheads.

Lachesis [52] is a resource allocation framework that uses
supervised learning to predict the resources that a function
would need for each invocation based on its input character-
istics. Lachesis eliminates the need for users to specify the
memory configuration for the function. Parrotfish, unlike
Lachesis, is not in the critical path of the function’s execution,
resulting in less overheads.

Workflow optimization: ORION [35] is designed to es-
timate the end-to-end (E2E) latency of serverless workflows
and improving it by allocating right amount of resources to
functions. To build the execution timemodel of each function,
ORION samples it at three fixed configurations where differ-
ent are expected to saturate. It then uses percentile-wise lin-
ear interpolation to approximate the underlying non-linear
model. StepConf [57] uses heuristic algorithms to optimize
the performance and cost of serverless workflows. Parrotfish
can be used to complement these tools, providing them with
more accurate per-function execution time models with low
sampling cost.

7 CONCLUSION
Parrotfish is a serverless cost optimization tool employing an
online parametric regression strategy. Parrotfish can reduce
the exploration cost of optimization by an average (geomet-
ric) of 1.81-9.96× compared to the state-of-the-art serverless
optimization tools. The recommended configurations also
had 25.74% lower cost on average. It is publicly available at
https://github.com/ubc-cirrus-lab/parrotfish.

ACKNOWLEDGMENTS
We thank Sathish Gopalakrishnan for constructive early-
stage discussions and members of the UBC CIRRUS Lab
for their feedback on this work. We also thank anonymous
reviewers and our shepherd, Kostis Kaffes, for helping us
improve the paper. We thank Efe Evci, Erik Langille, Jacob
Grossbard, Skylar Liang, and Yaman Malkoc for conducting
early explorations of this project. This workwas supported in
part by NSERC grants RGPIN-2021-03714 and DGECR-2021-
00462 and the Mitacs GRI program. This work was enabled
by the Digital Research Alliance of Canada, Google Cloud
Research Credits, and AWS Cloud Credits for Research.

https://github.com/ubc-cirrus-lab/parrotfish

Parrotfish: Parametric Regression for Optimizing Serverless Functions SoCC ’23, October 30–November 1, 2023, Santa Cruz, CA, USA

REFERENCES
[1] Nabeel Akhtar, Ali Raza, Vatche Ishakian, and Ibrahim Matta. 2020.

COSE: Configuring serverless functions using statistical learning. In
IEEE INFOCOM 2020-IEEE Conference on Computer Communications.
IEEE, 129–138.

[2] Omid Alipourfard, Hongqiang Harry Liu, Jianshu Chen, Shivaram
Venkataraman, Minlan Yu, and Ming Zhang. 2017. Cherrypick: Adap-
tively Unearthing the Best Cloud Configurations for Big Data Analytics.
In Proceedings of the 14th USENIX Conference on Networked Systems
Design and Implementation (NSDI’17). USENIX Association, 469–482.

[3] Artem Arkhipov. 2022. How to Get Headless Chrome Running via
Puppeteer on AWS Lambda. Retrieved 2023-09-25 from https://ww
w.techmagic.co/blog/running-headless-chrome-with-aws-lambda-
layers/

[4] AWS. 2023. AWS Compute Optimizer. Retrieved 2023-09-22 from
https://aws.amazon.com/compute-optimizer/

[5] AWS. 2023. AWS Lambda Pricing. Retrieved 2023-09-25 from https:
//aws.amazon.com/lambda/pricing/

[6] AWS. 2023. Configuring Lambda Function Options. Retrieved 2023-09-
25 from https://docs.aws.amazon.com/lambda/latest/dg/configuration-
function-common.html

[7] AWS. 2023. Profiling functions with AWS Lambda Power Tuning.
Retrieved 2023-09-25 from https://docs.aws.amazon.com/lambda/lates
t/operatorguide/profile-functions.html

[8] AWS. 2023. S3 image resizer (Java). Retrieved 2023-09-18 from
https://github.com/awsdocs/aws-lambda-developer-guide/tree/mai
n/sample-apps/s3-java

[9] AWS. 2023. Troubleshooting Lambda configurations. Retrieved 2023-
09-25 from https://docs.aws.amazon.com/lambda/latest/operatorguid
e/configurations.html

[10] Azure. 2023. Azure Functions pricing. Retrieved 2023-09-25 from
https://azure.microsoft.com/en-us/pricing/details/functions/

[11] Ataollah Fatahi Baarzi, George Kesidis, Carlee Joe-Wong, and Moham-
mad Shahrad. 2021. On Merits and Viability of Multi-Cloud Serverless.
In Proceedings of the ACM Symposium on Cloud Computing (SoCC ’21).
ACM, 600–608.

[12] Mike Bailey. 2019. Right-sizing your AWS Lambdas. Retrieved 2023-
09-25 from https://mike.bailey.net.au/2019/05/right-sizing-your-aws-
lambdas/

[13] Vivek M. Bhasi, Jashwant Raj Gunasekaran, Aakash Sharma, Mah-
mut Taylan Kandemir, and Chita Das. 2022. Cypress: Input Size-
Sensitive Container Provisioning and Request Scheduling for Server-
less Platforms. In Proceedings of the 13th Symposium on Cloud Comput-
ing (SoCC ’22). ACM, 257–272.

[14] Alex Casalboni. 2019. AWS Lambda Power Tuning. Retrieved 2023-06-
06 from https://github.com/alexcasalboni/aws-lambda-power-tuning

[15] Marcin Copik, Grzegorz Kwasniewski, Maciej Besta, Michal Pod-
stawski, and Torsten Hoefler. 2021. SeBS: A Serverless Benchmark
Suite for Function-as-a-Service Computing. In Proceedings of the 22nd
International Middleware Conference (Middleware ’21). ACM, 64–78.

[16] Robert Cordingly, Wen Shu, and Wes J. Lloyd. 2020. Predicting Per-
formance and Cost of Serverless Computing Functions with SAAF. In
2020 IEEE Intl Conf on Dependable, Autonomic and Secure Computing,
Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud
and Big Data Computing, Intl Conf on Cyber Science and Technology
Congress (DASC/PiCom/CBDCom/CyberSciTech). 640–649. https://doi.
org/10.1109/DASC-PICom-CBDCom-CyberSciTech49142.2020.00111

[17] Robert Cordingly, Sonia Xu, and Wes Lloyd. 2022. Function Memory
Optimization for Heterogeneous Serverless Platforms with CPU Time
Accounting. In 2022 IEEE International Conference on Cloud Engineering
(IC2E). 104–115.

[18] Datadog. 2021. The state of serverless. Retrieved 2023-09-25 from
https://www.datadoghq.com/state-of-serverless-2021/

[19] Datadog. 2022. The state of serverless. Retrieved 2023-09-25 from
https://www.datadoghq.com/state-of-serverless-2022/

[20] Arnaud de Myttenaere, Boris Golden, Bénédicte Le Grand, and Fabrice
Rossi. 2016. Mean Absolute Percentage Error for regression models.
Neurocomputing 192 (jun 2016), 38–48. https://doi.org/10.1016/j.neuc
om.2015.12.114

[21] Simon Eismann, Long Bui, Johannes Grohmann, Cristina Abad, Nikolas
Herbst, and Samuel Kounev. 2021. Data and evaluation scripts for
the manuscript "Sizeless: Predicting the optimal size of serverless
functions". Retrieved 2023-05-07 from https://codeocean.com/capsul
e/6066333

[22] Simon Eismann, Long Bui, Johannes Grohmann, Cristina Abad, Nikolas
Herbst, and Samuel Kounev. 2021. Sizeless: Predicting the Optimal
Size of Serverless Functions. In Proceedings of the 22nd International
Middleware Conference. ACM, 248–259.

[23] Simon Eismann, Johannes Grohmann, Erwin Van Eyk, Nikolas Herbst,
and Samuel Kounev. 2020. Predicting the costs of serverless workflows.
In Proceedings of the ACM/SPEC international conference on performance
engineering. 265–276.

[24] Mohamed Elsakhawy and Michael Bauer. 2021. Performance Analysis
of Serverless Execution Environments. In 2021 International Conference
on Electrical, Communication, and Computer Engineering (ICECCE). 1–
6.

[25] Alexander Fuerst and Prateek Sharma. 2022. Locality-Aware Load-
Balancing For Serverless Clusters. In Proceedings of the 31st Interna-
tional Symposium on High-Performance Parallel and Distributed Com-
puting (HPDC ’22). ACM, 227–239.

[26] Samuel Ginzburg and Michael J. Freedman. 2020. Serverless isn’t
server-less: Measuring and exploiting resource variability on cloud
FaaS platforms. In Proceedings of the 2020 Sixth International Workshop
on Serverless Computing. 43–48.

[27] Wenqi Glantz. 2023. Automating performance optimization with AWS
Lambda Power Tuning. Retrieved 2023-06-06 from https://betterpr
ogramming.pub/automating-performance-optimization-with-aws-
lambda-power-tuning-d295e7141ecc

[28] Zhiyuan Guo, Zachary Blanco, Mohammad Shahrad, Zerui Wei,
Bili Dong, Jinmou Li, Ishaan Pota, Harry Xu, and Yiying Zhang.
2022. Resource-Centric Serverless Computing. arXiv preprint
arXiv:2206.13444 (2022).

[29] John L Hennessy and David A Patterson. 2011. Computer architecture:
a quantitative approach. Elsevier.

[30] IBM. 2023. IBM Cloud Functions Pricing. Retrieved 2023-09-25 from
https://cloud.ibm.com/functions/learn/pricing/

[31] Daniel Ireson. 2021. Formplug. Retrieved 2023-09-25 from https:
//github.com/danielireson/formplug/

[32] Jeongchul Kim and Kyungyong Lee. 2019. FunctionBench: A suite
of workloads for serverless cloud function service. In 2019 IEEE 12th
International Conference on Cloud Computing (CLOUD). IEEE, 502–504.

[33] Mohamed Labouardy. 2019. How We Reduced Lambda Functions
Costs by Thousands of Dollars. Retrieved 2023-09-25 from https:
//labouardy.com/how-we-reduced-lambda-functions-costs-by-
thousands-of-dollars/

[34] Danielle Lambion, Robert Schmitz, Robert Cordingly, Navid Heydari,
and Wes Lloyd. 2022. Characterizing X86 and ARM Serverless Perfor-
mance Variation: A Natural Language Processing Case Study (ICPE
’22). ACM, 69–75.

[35] Ashraf Mahgoub, Edgardo Barsallo Yi, Karthick Shankar, Sameh El-
nikety, Somali Chaterji, and Saurabh Bagchi. 2022. ORION and
the Three Rights: Sizing, Bundling, and Prewarming for Serverless
DAGs. In 16th USENIX Symposium on Operating Systems Design and

https://www.techmagic.co/blog/running-headless-chrome-with-aws-lambda-layers/
https://www.techmagic.co/blog/running-headless-chrome-with-aws-lambda-layers/
https://www.techmagic.co/blog/running-headless-chrome-with-aws-lambda-layers/
https://aws.amazon.com/compute-optimizer/
https://aws.amazon.com/lambda/pricing/
https://aws.amazon.com/lambda/pricing/
https://docs.aws.amazon.com/lambda/latest/dg/configuration-function-common.html
https://docs.aws.amazon.com/lambda/latest/dg/configuration-function-common.html
https://docs.aws.amazon.com/lambda/latest/operatorguide/profile-functions.html
https://docs.aws.amazon.com/lambda/latest/operatorguide/profile-functions.html
https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/s3-java
https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/s3-java
https://docs.aws.amazon.com/lambda/latest/operatorguide/configurations.html
https://docs.aws.amazon.com/lambda/latest/operatorguide/configurations.html
https://azure.microsoft.com/en-us/pricing/details/functions/
https://mike.bailey.net.au/2019/05/right-sizing-your-aws-lambdas/
https://mike.bailey.net.au/2019/05/right-sizing-your-aws-lambdas/
https://github.com/alexcasalboni/aws-lambda-power-tuning
https://doi.org/10.1109/DASC-PICom-CBDCom-CyberSciTech49142.2020.00111
https://doi.org/10.1109/DASC-PICom-CBDCom-CyberSciTech49142.2020.00111
https://www.datadoghq.com/state-of-serverless-2021/
https://www.datadoghq.com/state-of-serverless-2022/
https://doi.org/10.1016/j.neucom.2015.12.114
https://doi.org/10.1016/j.neucom.2015.12.114
https://codeocean.com/capsule/6066333
https://codeocean.com/capsule/6066333
https://betterprogramming.pub/automating-performance-optimization-with-aws-lambda-power-tuning-d295e7141ecc
https://betterprogramming.pub/automating-performance-optimization-with-aws-lambda-power-tuning-d295e7141ecc
https://betterprogramming.pub/automating-performance-optimization-with-aws-lambda-power-tuning-d295e7141ecc
https://cloud.ibm.com/functions/learn/pricing/
https://github.com/danielireson/formplug/
https://github.com/danielireson/formplug/
https://labouardy.com/how-we-reduced-lambda-functions-costs-by-thousands-of-dollars/
https://labouardy.com/how-we-reduced-lambda-functions-costs-by-thousands-of-dollars/
https://labouardy.com/how-we-reduced-lambda-functions-costs-by-thousands-of-dollars/

SoCC ’23, October 30–November 1, 2023, Santa Cruz, CA, USA Arshia Moghimi, Joe Hattori, Alexander Li, Mehdi Ben Chikha, and Mohammad Shahrad

Implementation (OSDI 22). USENIX Association, 303–320. https:
//www.usenix.org/conference/osdi22/presentation/mahgoub

[36] Djob Mvondo, Mathieu Bacou, Kevin Nguetchouang, Lucien Ngale,
Stéphane Pouget, Josiane Kouam, Renaud Lachaize, Jinho Hwang,
Tim Wood, Daniel Hagimont, Noël De Palma, Bernabé Batchakui,
and Alain Tchana. 2021. OFC: An Opportunistic Caching System for
FaaS Platforms. In Proceedings of the Sixteenth European Conference on
Computer Systems (EuroSys ’21). ACM, 228–244.

[37] Sebastien Napoleon. 2023. How to optimize your lambda functions
with Aws Lambda Power Tuning. Retrieved 2023-09-25 from https:
//dev.to/aws-builders/how-to-optimize-your-lambda-functions-
with-aws-lambda-power-tuning-10h5

[38] OriginLab. 2023. OriginPro, Version 2023b. Retrieved 2023-09-25
from https://www.originlab.com/origin OriginLab Corporation,
Northampton, MA, USA..

[39] Jinsu Park, Seongbeom Park, and Woongki Baek. 2019. CoPart: Co-
ordinated Partitioning of Last-Level Cache and Memory Bandwidth
for Fairness-Aware Workload Consolidation on Commodity Servers.
In Proceedings of the Fourteenth EuroSys Conference 2019 (EuroSys ’19).
ACM, Article 10, 16 pages.

[40] Anish Pimpley, Shuo Li, Anubha Srivastava, Vishal Rohra, Yi Zhu,
Soundararajan Srinivasan, Alekh Jindal, Hiren Patel, Shi Qiao, and
Rathijit Sen. 2021. Optimal resource allocation for serverless queries.
arXiv preprint arXiv:2107.08594 (2021).

[41] Rohan Basu Roy, Tirthak Patel, and Devesh Tiwari. 2022. IceBreaker:
Warming Serverless Functions Better with Heterogeneity. In Proceed-
ings of the 27th ACM International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS ’22). ACM,
753–767.

[42] Ghazal Sadeghian, Mohamed Elsakhawy, Mohanna Shahrad, Joe Hat-
tori, and Mohammad Shahrad. 2023. UnFaaSener: Latency and Cost
Aware Offloading of Functions from Serverless Platforms. In 2023
USENIX Annual Technical Conference (USENIX ATC 23). USENIX Asso-
ciation, 879–896.

[43] Gor Safaryan, Anshul Jindal, Mohak Chadha, and Michael Gerndt.
2022. SLAM: SLO-Aware Memory Optimization for Serverless Appli-
cations. In 2022 IEEE 15th International Conference on Cloud Computing
(CLOUD). IEEE Computer Society, 30–39.

[44] Joel Scheuner, Rui Deng, Jan-Philipp Steghöfer, and Philipp Leitner.
2022. CrossFit: Fine-grained Benchmarking of Serverless Application
Performance across Cloud Providers. In 2022 IEEE/ACM 15th Interna-
tional Conference on Utility and Cloud Computing (UCC). IEEE, 51–60.

[45] Trever Schirmer, Nils Japke, Sofia Greten, Tobias Pfandzelter, and
David Bermbach. 2023. The Night Shift: Understanding Performance
Variability of Cloud Serverless Platforms. In Proceedings of the 1stWork-
shop on SErverless Systems, Applications and MEthodologies (SESAME
’23). ACM, 27–33.

[46] Gideon Schwarz. 1978. Estimating the Dimension of a Model. The
Annals of Statistics 6, 2 (1978), 461 – 464. https://doi.org/10.1214/aos/
1176344136

[47] Özgür Sedefoğlu and Hasan Sözer. 2021. Cost Minimization for De-
ploying Serverless Functions. In Proceedings of the 36th Annual ACM
Symposium on Applied Computing (SAC ’21). ACM, 83–85.

[48] Mohammad Shahrad, Jonathan Balkind, and David Wentzlaff. 2019.
Architectural implications of function-as-a-service computing. In Pro-
ceedings of the 52nd annual IEEE/ACM international symposium on
microarchitecture. 1063–1075.

[49] Mohammad Shahrad, Sameh Elnikety, and Ricardo Bianchini. 2021.
Provisioning Differentiated Last-Level Cache Allocations to VMs in
Public Clouds. In Proceedings of the ACM Symposium on Cloud Com-
puting (SoCC ’21). ACM, 319–334.

[50] Mohammad Shahrad, Rodrigo Fonseca, Íñigo Goiri, Gohar Chaudhry,
Paul Batum, Jason Cooke, Eduardo Laureano, Colby Tresness, Mark
Russinovich, and Ricardo Bianchini. 2020. Serverless in the Wild:
Characterizing and Optimizing the Serverless Workload at a Large
Cloud Provider. In Proceedings of the 2020 USENIX Conference on Usenix
Annual Technical Conference (USENIX ATC ’20). USENIX Association,
Article 14, 14 pages.

[51] Prakash P Shenoy and Glenn Shafer. 1990. Axioms for probability
and belief-function propagation. In Machine intelligence and pattern
recognition. Vol. 9. Elsevier, 169–198.

[52] Prasoon Sinha, Kostis Kaffes, and Neeraja J. Yadwadkar. 2023. Online
Learning for Right-Sizing Serverless Functions. In Architecture and
System Support for Transformer Models (ASSYST @ISCA 2023). https:
//openreview.net/forum?id=4zdPNY3SDQk

[53] Brett Uglow. 2022. Easy lambda optimization. Retrieved 2023-09-25
from https://medium.com/digio-australia/easy-lambda-optimization-
c2f2e6e49515

[54] Dmitrii Ustiugov, Plamen Petrov, Marios Kogias, Edouard Bugnion,
and Boris Grot. 2021. Benchmarking, Analysis, and Optimization of
Serverless Function Snapshots. In Proceedings of the 26th ACM Interna-
tional Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS ’21). ACM, 559–572.

[55] Shivaram Venkataraman, Zongheng Yang, Michael Franklin, Benjamin
Recht, and Ion Stoica. 2016. Ernest: Efficient Performance Prediction
for Large-Scale Advanced Analytics. In Proceedings of the 13th Usenix
Conference on Networked Systems Design and Implementation (NSDI’16).
USENIX Association, 363–378.

[56] Howard DeanWatts. 2020. lambda-OCRmyPDF. Retrieved 2023-09-22
from https://github.com/chronograph-pe/lambda-OCRmyPDF

[57] Zhaojie Wen, Yishuo Wang, and Fangming Liu. 2022. StepConf: SLO-
Aware Dynamic Resource Configuration for Serverless FunctionWork-
flows. In IEEE INFOCOM 2022 - IEEE Conference on Computer Commu-
nications. 1868–1877. https://doi.org/10.1109/INFOCOM48880.2022.97
96962

[58] Neeraja J. Yadwadkar, Bharath Hariharan, Joseph E. Gonzalez, Burton
Smith, and Randy H. Katz. 2017. Selecting the Best VM across Multiple
Public Clouds: A Data-Driven Performance Modeling Approach. In
Proceedings of the 2017 Symposium on Cloud Computing (SoCC ’17).
ACM, 452–465.

[59] Yanqi Zhang, Íñigo Goiri, Gohar Irfan Chaudhry, Rodrigo Fonseca,
Sameh Elnikety, Christina Delimitrou, and Ricardo Bianchini. 2021.
Faster and Cheaper Serverless Computing on Harvested Resources. In
Proceedings of the ACM SIGOPS 28th Symposium on Operating Systems
Principles (SOSP ’21). ACM, 724–739.

[60] Zhuangzhuang Zhou, Yanqi Zhang, and Christina Delimitrou. 2022.
AQUATOPE: QoS-and-Uncertainty-Aware Resource Management for
Multi-Stage Serverless Workflows. In Proceedings of the 28th ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 1 (ASPLOS 2023). ACM,
1–14.

https://www.usenix.org/conference/osdi22/presentation/mahgoub
https://www.usenix.org/conference/osdi22/presentation/mahgoub
https://dev.to/aws-builders/how-to-optimize-your-lambda-functions-with-aws-lambda-power-tuning-10h5
https://dev.to/aws-builders/how-to-optimize-your-lambda-functions-with-aws-lambda-power-tuning-10h5
https://dev.to/aws-builders/how-to-optimize-your-lambda-functions-with-aws-lambda-power-tuning-10h5
https://www.originlab.com/origin
https://doi.org/10.1214/aos/1176344136
https://doi.org/10.1214/aos/1176344136
https://openreview.net/forum?id=4zdPNY3SDQk
https://openreview.net/forum?id=4zdPNY3SDQk
https://medium.com/digio-australia/easy-lambda-optimization-c2f2e6e49515
https://medium.com/digio-australia/easy-lambda-optimization-c2f2e6e49515
https://github.com/chronograph-pe/lambda-OCRmyPDF
https://doi.org/10.1109/INFOCOM48880.2022.9796962
https://doi.org/10.1109/INFOCOM48880.2022.9796962

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Serverless Pricing Model
	2.2 Why is serverless rightsizing hard?
	2.3 State of Serverless Cost Optimization

	3 Modeling Serverless Functions
	3.1 Modeling Execution Time and Cost
	3.2 Sample-Limited Model Performance
	3.3 Significance of Sampling Strategy

	4 Parrotfish
	4.1 Online Parametric Regression
	4.2 Input Variability
	4.3 Practicality and Versatility

	5 Evaluation
	5.1 Effectiveness of Parrotfish
	5.2 Handling Input Variability
	5.3 User Constraints
	5.4 Cost-Aware Sampling Strategy
	5.5 Termination Logic Sensitivity Study
	5.6 Unit Belief Sensitivity Study
	5.7 Tail Execution Time Model Accuracy

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

