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ABSTRACT
The rapid increase in computing demand and corresponding
energy consumption have focused attention on computing’s
impact on the climate and sustainability. Prior work proposes
metrics that quantify computing’s carbon footprint across
several lifecycle phases, including its supply chain, operation,
and end-of-life. Industry uses these metrics to optimize the
carbon footprint of manufacturing hardware and running
computing applications. Unfortunately, prior work on opti-
mizing datacenters’ carbon footprint often succumbs to the
sunk cost fallacy by considering embodied carbon emissions
(a sunk cost) when making operational decisions (i.e., job
scheduling and placement), which leads to operational deci-
sions that do not always reduce the total carbon footprint.
In this paper, we evaluate carbon-aware job scheduling

and placement on a given set of servers for several carbon
accounting metrics. Our analysis reveals state-of-the-art car-
bon accounting metrics that include embodied carbon emis-
sions when making operational decisions can increase the
total carbon footprint of executing a set of jobs. We study the
factors that affect the added carbon cost of such suboptimal
decision-making. We then use a real-world case study from
a datacenter to demonstrate how the sunk carbon fallacy
manifests itself in practice. Finally, we discuss the implica-
tions of our findings in better guiding effective carbon-aware
scheduling in on-premise and cloud datacenters.

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
SoCC ’24, November 20–22, 2024, Redmond, WA, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1286-9/24/11.
https://doi.org/10.1145/3698038.3698542

CCS CONCEPTS
• Hardware→ Impact on the environment; Emerging
tools and methodologies.

KEYWORDS
Sustainable computing, operational and embodied carbon
footprint, sustainability, metrics, datacenters, scheduling.

ACM Reference Format:
Noman Bashir, Varun Gohil, Anagha Belavadi, Mohammad Shahrad,
David Irwin, Elsa Olivetti, and Christina Delimitrou. 2024. The Sunk
Carbon Fallacy: Rethinking Carbon Footprint Metrics for Effective
Carbon-Aware Scheduling. InACM Symposium on Cloud Computing
(SoCC ’24), November 20–22, 2024, Redmond, WA, USA. ACM, New
York, NY, USA, 10 pages. https://doi.org/10.1145/3698038.3698542

1 INTRODUCTION
Computing demand has skyrocketed over recent decades,
with no signs of slowing [18]. This demand is likely acceler-
ating due to the rise of computationally intensive generative
AI tools, such as ChatGPT [13] and GitHub Copilot [45],
which promise to unlock a wide range of innovative applica-
tions. However, as marginal improvements in computing’s
energy efficiency shrink due to the slowdown in process
scaling [27, 54], the growing demand for computing power
is expected to drive a proportional increase in energy con-
sumption. This rising energy footprint has sparked signif-
icant concerns about computing’s impact on climate and
sustainability. Fortunately, awareness of the need to improve
computing’s sustainability is increasing [8, 46, 60], with coor-
dinated efforts from both industry and academia to mitigate
its environmental impact [9, 41, 55, 56, 60].

Recent efforts to improve computing’s sustainability have
focused on quantifying and optimizing its carbon footprint
across all lifecycle stages, from chip design and manufac-
turing [1, 24] to system operations [25, 28, 43] and e-waste
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management [49]. The Greenhouse Gas (GHG) Protocol [59]
highlights two key emission types: Scope 2 covers emissions
from electricity use in datacenters (operational emissions);
Scope 3 includes emissions from chip manufacturing, supply
chains, and e-waste management (embodied emissions).

Previous work on computing’s carbon footprint has used
various metrics, typically based on operational emissions
alone or a weighted combination of operational and em-
bodied emissions. A common approach aggregates a job’s
operational emissions with a portion of the server’s embod-
ied emissions, distributing the server’s embodied emissions
across jobs based on their resource usage and duration. No-
table examples include the Software Carbon Intensity (SCI)
introduced by the Green Software Foundation [20], Com-
putational Carbon Intensity [49], and Sustainability Cost
Rate [21]. Though these metrics use different terms, they
follow the same core principle: a job’s carbon footprint is the
sum of its share of the hardware’s embodied emissions and
the operational emissions generated during its execution.

In this paper, we focus on carbon-aware workload sched-
uling and job placement on datacenter servers. While em-
bodied carbon-based metrics like SCI are often proposed to
guide operational decisions, such as scheduling and job place-
ment, we argue that scheduling and procurement operate
on different timescales and should be optimized indepen-
dently. Scheduling determines which servers handle specific
jobs and should focus on minimizing the operational car-
bon footprint of active servers. In contrast, procurement
decisions–such as which servers to purchase and when to re-
place them–affect the embodied carbon footprint from hard-
ware manufacturing, which cannot be influenced once a job
is being scheduled. These processes are distinct: scheduling
occurs continuously as jobs are assigned, while procurement
decisions are made periodically based on hardware lifecycles.

Importantly, metrics like SCI, which incorporate lifecycle
emissions, typically account only for the emissions of servers
running jobs, ignoring the embodied carbon of idle servers.
This oversight can lead to unintended consequences when
optimizing for SCI-like metrics in job scheduling, paradoxi-
cally increasing a datacenter’s overall carbon footprint by
neglecting the broader carbon impact of idle hardware. We
show that focusing solely on SCI-like metrics in schedul-
ing may undermine the goal of minimizing a datacenter’s
total carbon footprint, underscoring the need for separate,
independent optimization of scheduling and procurement.
The suboptimal outcomes of carbon-aware scheduling

based on SCI-like metrics stem from a cognitive bias known
as the sunk cost fallacy. According to the principle of by-
gones, rooted in economic theory’s principle of separability,
decisions should focus solely on future possibilities with-
out being influenced by past expenditures or irreversible
events [17]. Applied to datacenter operations, scheduling

and job placement decisions should prioritize the current
operational context, disregarding embodied emissions that
have already occurred. The embodied emissions are fixed at
procurement and cannot be changed through operational
decisions; operators should prioritize operational carbon.
Ignoring sunk costs is intuitive and supported by prior

research [22, 39, 48, 57]. However, recent efforts to develop
metrics that optimize computing’s lifecycle carbon footprint
have unintentionally introduced a sunk carbon fallacy, a vari-
ant of the sunk cost fallacy applied to carbon. These metrics
conflate procurement and operation by incorporating em-
bodied emissions into real-time scheduling decisions. As our
example in Section 3.2 shows, using SCI as a scheduling met-
ric can paradoxically increase a datacenter’s overall carbon
footprint, highlighting the need to optimize scheduling and
procurement independently for true carbon efficiency.
The extent to which minimizing a datacenter’s total car-

bon footprint diverges from minimizing the sum of job-level
lifecycle carbon using metrics like SCI depends on several
infrastructure characteristics. One key factor is the hetero-
geneity in server performance relative to their operational
and embodied carbon footprints. In a datacenter with ho-
mogeneous servers—where performance is similar across
all servers—incorporating embodied carbon into a schedul-
ing metric like SCI would not significantly affect the overall
system-level carbon footprint. However, real-world datacen-
ters are often heterogeneous, differing in hardware age (e.g.,
new vs. old) and type (e.g., CPU vs. GPU). For example, older
servers generally have lower embodied carbon due to earlier
manufacturing but have higher operational carbon emissions
than newer, energy-efficient servers, as shown in Figure 1.
Moreover, GPUs are ideal for compute-intensive tasks; CPUs
may perform better per unit of carbon for specific tasks [2].

Our work focuses on CPU heterogeneity, which is signifi-
cant enough to show that applying a one-size-fits-all metric
like SCI, which includes embodied carbon, can distort sched-
uling decisions and increase the overall carbon footprint.
Another critical factor is datacenter utilization. When utiliza-
tion is either very high or very low —where all servers are in
use or none are — the choice of scheduling metric has little
impact on the total carbon footprint. However, at intermedi-
ate utilization levels, common in many datacenters, metrics
like SCI can lead to inefficient scheduling, thereby increasing
the total carbon footprint. In Section 3.2, we examine this
discrepancy and evaluate the impact of infrastructure factors
on a datacenter’s carbon footprint using concrete examples.

In showing how the sunk cost fallacy manifests in carbon-
aware scheduling, we make the following contributions:
1 – We show that metrics incorporating both embodied and
operational carbon emissions, while seemingly comprehen-
sive, can lead to suboptimal scheduling decisions. These met-
rics may paradoxically increase a datacenter’s overall carbon
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footprint, contradicting their intended goal. We explore key
factors such as datacenter utilization, operational carbon in-
tensity, and embodied carbon amortization approaches that
exacerbate these suboptimal outcomes.
2 –We evaluate three metrics, including those that prioritize
operational emissions or account for infrastructure-wide em-
bodied carbon better than SCI. Through a real-world case
study of an on-premise datacenter, we demonstrate that un-
der realistic workload conditions, focusing on operational
carbon emissions results in more carbon-efficient scheduling
and a reduced total carbon footprint.
3 – We provide practical guidelines for datacenter operators
and users to avoid the sunk carbon fallacy. Our recommen-
dations emphasize selecting metrics that accurately reflect
carbon costs relevant to operational decisions, enabling opti-
mization for a lower overall carbon footprint.

2 BACKGROUND AND MOTIVATION
Prior work on sustainable computing. There has been
extensive research on the environmental impact of com-
puting [46] and on defining what sustainable computing
entails [11, 60]. Prior work has also analyzed various car-
bon accounting frameworks within computing, highlight-
ing the challenges of accurately assessing its carbon foot-
print [10, 30], particularly regarding the error-prone nature
of embodied carbon values [10] and operational carbon in-
tensity estimates [30]. Recent studies have focused on quanti-
fying both operational and embodied carbon and their trade-
offs to inform architectural design aimed at reducing servers’
overall lifecycle carbon footprint. Prior work has explored
the potential benefits and limitations of spatiotemporal work-
load scheduling for reducing carbon emissions [47]. In paral-
lel, researchers have developed algorithms for carbon-aware
workload shifting and built system support for such algo-
rithms [23, 25, 43, 52]. Despite the advances, the real-world
adoption of carbon-aware optimizations remains limited,
with only one notable example of carbon-aware workload
shifting implemented by hyperscalers [41].
Metrics for sustainable computing. Recent work has ex-
plored various metrics to quantify and optimize computing’s
carbon footprint. Gandhi et al. [21] propose sustainability
metrics for datacenters, including the amortized sustainabil-
ity cost metric, which attributes both operational and em-
bodied carbon to a job. Switzer et al. [49] address the end-
of-life problem for computing hardware and propose the
computational carbon intensity (CCI) metric, which aids in
making decisions about component replacement and end-
of-life management. The software industry has also focused
on promoting green software development, with initiatives
from the Green Software Foundation (GSF) [20], which in-
troduced the Software Carbon Intensity (SCI) metric to help
developers quantify and reduce software’s carbon footprint.

Limitations and research gaps. Previous work on car-
bon accounting has introduced various metrics to reduce
computing’s carbon footprint, sparking debate about their
usefulness and effectiveness [14, 15, 19, 42]. Despite the crit-
ical nature of the problem, little research has focused on
analyzing the incentives each metric provides and the out-
comes they produce. Recent studies suggest that creating a
single metric that is simple, accurate, precise, and offers the
right incentives for optimizing decision-making across com-
puting’s entire lifecycle may not be feasible [50]. Moreover,
evaluating all possible metric combinations presents a signif-
icant challenge. The total lifecycle carbon footprint includes
the embodied carbon of all servers, operational carbon from
idle servers, and emissions from active servers running work-
loads. Procurement decisions and job scheduling affect this
footprint, but they operate on different timescales: seconds
to days for scheduling and months to years for procurement.
This work focuses on carbon-aware workload scheduling in
public cloud and enterprise datacenters, targeting reductions
in the carbon footprint added during this lifecycle stage.

3 THE SUNK CARBON FALLACY
This section shows how state-of-the-art carbon accounting
metrics fall prey to the sunk carbon fallacy, outlines factors
contributing to suboptimal decision-making, and examines
metrics that yield better carbon-aware scheduling outcomes.
Setup. Carbon-aware scheduling assigns jobs to available
servers to minimize the total carbon footprint of executing
those jobs. In our example, we assume the following setup:
– The scheduler aims to place jobs on servers to minimize
the total carbon footprint without knowledge of future job
arrivals or characteristics, making instantaneous placement
decisions—similar to production schedulers like Borg [7, 53].
– Jobs performance characteristics and energy usage on given
servers are known through profiling or public databases like
MLPerf [32] and OpenBenchmarking Suite [38].
– Servers are not power-proportional, consuming signifi-
cant power even at 0% utilization [6, 29], often exceeding
30% of peak usage. However, the idle power for processing
components is much lower. While individual servers may
be fully utilized, datacenter-level utilization typically ranges
between 30% to 60%, even in state-of-the-art facilities [53].
– Energy and carbon footprint estimates for servers
depend on components like power supplies, hard drives,
memory, and chassis. We use data from MIT’s Bates Re-
search and Engineering Center [33] and the hydro-powered
Massachusetts Green High Performance Computing Center
(MGHPCC) [34] that provides processor information.

Embodied carbon for processors is estimated using the
PAIA integrated circuit module [37], based on factors like
technology node (e.g., 7nm, 28nm), CPU package area,
die size, and fabrication location. Technology node and
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CPU package area data are sourced from official Intel and
AMD websites, while die sizes are gathered from Tech-
PowerUp [51], CPU-World [16], X86 CPU’s Guide [35], and
WikiChip [58], with cross-verification for consistency. We
use a carbon intensity of 495g.CO2/kWh for AMD proces-
sors fabricated in Taiwan [36] and 357g.CO2/kWh for Intel
processors fabricated in Hillsboro, Oregon [31].

For operational carbon estimates, we assume servers con-
sume their rated Thermal Design Power (TDP) at 100% utiliza-
tion, with a linear power increase between idle and full load.
We assume datacenter is in Sweden, with a carbon intensity
of 20g.CO2/kWh [31], and vary this intensity for analysis in
both embodied- and operational-dominant regions.
– Performance Benchmarks. Processor performance
scores are based on three benchmarks: Multithread Ratings
by PassMark [40], HEPScore [26], and SPEC CPU2017 Float-
ing Point Speed [44]. Not all benchmarks profile every pro-
cessor, which narrows the set of processors in our analysis.

3.1 Carbon-Aware Scheduling Metrics
This section defines three different metrics that can be used
to evaluate carbon-aware scheduling and job placement.
1 – Software Carbon Intensity (SCI)was introduced by the
Green Software Foundation [20] to quantify the rate of total
carbon emissions per functional unit R, which could be an
API call, machine learning (ML) training, or AI inference. The
carbon emissions for a given job consist of both operational
carbon emissions (denoted O) from running the job on the
server, and embodied carbon emissions (denoted M) for the
functional unit. SCI is defined as:

SCI = (O + M) per R = ((E * I) + M) per R,
where E is the job’s energy consumption (in kilowatt-hours)
over a given time window, including a portion of the server’s
idle and dynamic power usage. I is the carbon intensity
of electricity, measured in grams of CO2 equivalent per
kilowatt-hour (g.CO2/kWh), for the region where the server
operates. SCI accounts only for the embodied carbon (M) of
the active server running the job, computed as:

M = TE × T × RR/EL × TR. (1)
Here, TE is the total embodied emissions, EL is the server’s ex-
pected lifespan, and TR represents the server’s total resources.
T denotes the time duration, and RR is the resource reserved
for the job (see SCI specifications for further details [20]).
2 – Total Software Carbon Intensity (tSCI) extends SCI
by incorporating the embodied carbon emissions of the entire
infrastructure, aiming for a more accurate representation of
total emissions. Instead of accounting only for the server run-
ning the job, tSCI distributes a portion of the total embodied
emissions across all jobs, including idle infrastructure.
To extend SCI, we add a fraction of the infrastructure-

level embodied carbon based on the resources reserved and

Table 1: Specifications of servers in our example.
𝑆𝐴 𝑆𝐵

Processor Xeon E-2286G Xeon Gold 6538N

Release Date 05/29/2019 12/14/2023
PassMark Score 14020 44895
TDP (W) 90 205
Technology Node 14nm 10nm
Embodied Carbon (Kg.CO2) 8.04 101.89

the job’s allotted time, with a total embodied carbon (tM) of
tM = M + Midle-infra, where Midle-infra is the embodied carbon of
idle servers, calculated using the same method as M in Equa-
tion 1. Each idle server’s embodied carbon is proportionally
assigned to the job. Similarly, to account for the operational
carbon from idle servers, tO is computed as tO = O+Oidle-infra .
The total software carbon intensity is then:

tSCI = (tO + tM) per R.
To illustrate this, consider a datacenter with two servers,
A and B, with embodied carbon values of 400g.CO2 and
50g.CO2, and expected lifetimes of 10 and 5 years, respec-
tively. Server A has 40 cores, and server B has 10 cores. Sup-
pose job J1, which runs for one year using 10 cores, is sched-
uled on server B, while job J2, also using 10 cores, runs on
server A. The embodied carbon attributed to J1 is:

tM = 10g.CO2 +
400g.CO2 × 1𝑦𝑟

10𝑦𝑟𝑠︸              ︷︷              ︸
time fraction

× 30𝑐𝑜𝑟𝑒𝑠
40𝑐𝑜𝑟𝑒𝑠︸   ︷︷   ︸
idle fraction

× 10𝑐𝑜𝑟𝑒𝑠
20𝑐𝑜𝑟𝑒𝑠︸   ︷︷   ︸

usage fraction

,

= 25g.CO2 .
The time, idle, and usage fractions amortize the embodied
carbon of the idle infrastructure over time (1 out of 10 years),
idle resources (30 out of 40 cores are idle), and usage (10 of the
20 total used cores). The operational carbon emission rate, tO,
can be computed similarly, except for the time component.
3 – Operational Software Carbon Intensity (oSCI)metric
ignores the embodied carbon emissions for all the servers. It
makes scheduling decisions based on the operational carbon
emissions of running a given job. oSCI is expressed as,

oSCI = (E * I) per R.
This metric can include a portion of the base power from
the idle servers to incentivize turning off servers when they
are idle. However, for the current purpose, we keep it simple
and only account for the energy used by the job’s server.
Computing SCI, tSCI, and oSCI in Practice presents vary-
ing levels of complexity. oSCI, a subset of the other metrics,
is the simplest to calculate as job operating power can be
estimated through offline profiling. SCI, however, requires
embodied carbon estimates for all servers in a datacenter,
which can be difficult to obtain and often have significant
uncertainty [3, 12, 37]. This uncertainty can propagate un-
predictably, affecting scheduling outcomes. Calculating tSCI
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Figure 1: The normalized embodied and operational
carbon footprint (g.CO2) per Score-Yr for a datacen-
ter in Sweden with electricity’s carbon intensity of
14g.CO2/kWh [31]. The servers have a lifetime of 5 years.

and tracking it over time is even more complex, requiring
comprehensive datacenter-level information, including all
hardware, active jobs, resource reservations, and runtime ex-
pectations. The idle fraction of infrastructure varies as jobs
arrive and leave, resulting in a time-varying tSCI. While
cloud operators have access to this data, calculating tSCI
requires sophisticated infrastructure and precise attribution,
both costly and carbon-intensive. Public cloud users gener-
ally lack access to such data, making it impractical for them
to compute their carbon footprint. Thus, we do not expect
tSCI to be widely used in practice, and instead, we show
that oSCI can achieve similar scheduling outcomes with less
complexity. Finally, integrating operational and embodied
carbon estimates into scheduling decisions depends on the
scheduler. For example, in Slurm, nodes can be assigned
weights reflecting the chosen metric, such as oSCI. Slurm’s
energy monitoring tools can be easily modified to report
operational emissions with minimal overhead.

3.2 An Illustrative Example
We first use a simple example to demonstrate the sunk car-
bon fallacy. Consider a small datacenter with two servers
powered by two processors from Intel: Xeon E-2286G and
Xeon Gold 6538N, referred to as SA and SB, respectively. Ta-
ble 1 provides the detailed specifications for the two servers,
including processor model, their release dates, PassMark
scores, embodied carbon estimates, and TDP values.

Figure 1 shows the operational and embodied carbon emis-
sions normalized to the PassMark score and expected lifetime
of two servers in our dummy datacenter. An operational car-
bon value of 0.56 means that achieving a performance score
of 1 for one year using SA results in 0.56g.CO2 of operational
emissions. This example reflects a common scenario: a newer
server (SB), manufactured with 10nm technology, has 4.09×
the embodied carbon footprint of an older server (SA) us-
ing 14nm technology. However, energy efficiency gains over
recent years mean SB consumes 32.5% less energy than SA.
1 – Analyzing Scheduling Outcomes. Table 2 presents
the carbon footprint values used to choose a server for job
placement. It includes the total lifecycle emissions of the

Table 2: Values of SCI, tSCI, oSCI for 𝑆𝐴 and 𝑆𝐵 for job
placement in g.CO2 per Score-Yr. We also report the
total cluster carbon footprint for each metric.
Metric Scheduling/Placement Accounting

𝑆𝐴 𝑆𝐵 Cluster Carbon Footprint
SCI 0.11 + 0.83 = 0.94 0.45 + 0.56 = 1.01 (0.11 + 0.45) + 0.83 = 1.39
tSCI 0.94 + 0.45 = 1.39 1.01 + 0.11 = 1.12 (0.11 + 0.45) + 0.56 = 1.12
oSCI 0.83 0.56 (0.11 + 0.45) + 0.56 = 1.12

datacenter during the job’s execution, encompassing both
the embodied carbon for all servers and the operational car-
bon of active servers. The server with the lowest metric is
highlighted in bold and chosen to run the job. The datacenter-
level carbon footprint is the sum of the embodied carbon
(the sunk cost) for all servers and the operational carbon for
the server running the job (the marginal or additional cost).
As shown, when prioritizing the sum of embodied and

operational emissions, the SCImetric selects a highly energy-
inefficient server due to its low embodied carbon. While this
decision minimizes SCI, it results in a 24.10% higher car-
bon footprint for the datacenter. In contrast, the placement
choices of tSCI and oSCI align, leading to the minimum
cluster-level emissions, as both prioritize minimizing addi-
tional emissions while achieving the desired performance.
This example illustrates the classic scenario of a new,

energy-efficient server with high embodied carbon versus
an old, energy-inefficient server with low embodied carbon,
mainly due to the technology node difference. However, this
mismatch can occur where an energy-inefficient server has
a lower SCI value than a more efficient server. For instance,
as shown in Table 3, the newer Xeon E-2486 server, built on
a 10nm node, has a smaller embodied carbon footprint than
the EPYC 9334 server. Despite energy efficiency gains and
performance improvements, the EPYC 9334 server’s higher
embodied carbon results in a larger SCI value.
A similar situation arises between Ryzen Threadripper

5965WX and Xeon W9-3495. The Ryzen processor, built on a
5nm node, has a lower embodied carbon footprint than the
Xeon processor, which uses a 10nm node, despite the latter’s
advanced manufacturing process. These examples demon-
strate that the sunk carbon fallacy extends beyond the old
vs. new server comparison, as even servers not intended as
direct replacements can still coexist in a datacenter or cloud
platform, leading to the selection of an inefficient server.
2 – Effect of Datacenter Utilization. Our example shows
how variations in server characteristics lead to suboptimal
scheduling. We now explore the effect of datacenter utiliza-
tion on system-level carbon footprint increases when us-
ing SCI. Server SA has 12 logical cores (6 physical cores, 2
threads per core); each logical core has an 1168 PassMark
score. Server SB has 64 logical cores (32 physical cores, 2
threads per core); each logical core has a 701 PassMark score.
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Each job uses one logical core on SA and two logical cores
on SB to achieve a performance score of 1402 (closer to the
1168 for SA), giving us 44 cores of similar performance.

Figure 2 illustrates the increase in system-level carbon
footprint when jobs are scheduled using SCI, compared to
scheduling based on tSCI or oSCI. When datacenter uti-
lization is either 0% or 100%, all metrics yield the same re-
sult. However, at intermediate utilization levels, the choice
of server becomes important. The peak discrepancy occurs
when only 12 cores are needed to run the jobs (at 27.3% uti-
lization). The exact peak and the utilization level at which
it occurs will vary depending on the server set, their base
power values, and the scheduling granularity. In Section 4,
we present similar results for our case study.
3 – Effect of Operational Carbon Intensity. In our setup,
embodied carbon accounts for 11.7% and 44.5% of the lifecy-
cle emissions for SA and SB, respectively, with an average of
28.1% across servers. To analyze the impact of operational
carbon intensity, we scale the normalized operational carbon
to make embodied carbon account for 10% to 90% of lifecy-
cle emissions. Figure 3 shows the maximum added carbon
footprint due to the sunk carbon fallacy as embodied carbon
accounts for a higher share of lifecycle emissions. At 0%,
where only operational efficiency matters, using SA results
in a 48% increase in system-level carbon. Conversely, at 100%,
operational carbon is zero, and server choice is irrelevant.

Despite placing the datacenter in Sweden – a region with
one of the world’s lowest carbon intensities – operational
emissions still dominate because our embodied carbon esti-
mates focus only on the processor, which is a small portion of
the server-level carbon footprint. In contrast, the processor’s
TDP accounts for most of the server’s power and operational
carbon footprint. If server-level embodied carbon values
were used, the carbon intensity at which embodied carbon
makes a given %age of lifecycle emissions would be higher.
4 – Effect of Server’s Expected Lifetime. The expected
lifespan of servers has a similar impact on the added carbon
footprint at the system level. Figure 4 shows the maximum
added carbon footprint at the system-level as the server’s
embodied carbon is amortized over a longer period. As the
expected lifespan increases, the amortized embodied carbon
per year decreases, and its fraction of the lifecycle carbon
footprint decreases. As shown in Figure 3, lower embodied

Table 3: Additional scenarios of sunk carbon fallacy.
Values of carbon emissions are in g.CO2 per Score-Yr.

Server Pairs Additional Details

Xeon E-2486 EPYC 9334 New Xeon server (12/14/2023, 10nm)
0.08 + 0.47 = 0.55 0.23 + 0.39 = 0.62 vs. old EPYC server (11/10/2022, 5nm).
Ryzen 5965WX Xeon W9-3495 Older Ryzen server (03/08/2022, 5nm)
0.15 + 0.51 = 0.66 0.25 + 0.46 = 0.71 vs. New Xeon server (02/15/2023, 10nm).

values result in a higher system-level carbon footprint under
SCI, magnifying the impact of the sunk carbon fallacy.
5 – Effect of PerformanceMetric.Our results thus far have
used PassMark scores. However, our observation is agnostic
to any particular benchmarking method. Figure 5 shows that
the conditions required for the sunk carbon fallacy, i.e., a
server with low SCI is inefficient, manifest across different
benchmarks. The servers we use in our examples changed,
as we did not have SPEC and HS26 scores for the servers in
the illustrative example. While the combination of servers
that manifest the sunk carbon fallacy may change, the effect
should be present in all performance benchmarks.
Generalization of OutcomesWe now explore whether our
observations hold across different hardware configurations,
considering their embodied and operational carbon ratios.
Assume there are N servers in a datacenter, and k servers are
needed at any time. Let𝑀𝑖 and 𝑂𝑖 represent the embodied
and operational carbon costs of server 𝑖 , and let 𝑍𝑖 = 𝑀𝑖 +𝑂𝑖

denote the total carbon emissions over the server’s lifetime.
The SCI and oSCI strategies are formalized as:

SCI = {𝑖 | 𝑍𝑖 are the 𝑘 smallest values of 𝑍 },
oSCI = {𝑖 | 𝑂𝑖 are the 𝑘 smallest values of 𝑂}.

If k = 0 or k = N, both strategies select the same servers.
However, oSCI minimizes

∑
𝑖∈oSCI𝑂𝑖 , the operational car-

bon, which can be reduced post-purchase. In contrast, SCI
might pick servers with lower lifecycle costs 𝑍𝑖 but higher
𝑂𝑖 , resulting in suboptimal choices. Therefore:∑︁

𝑖∈oSCI
𝑂𝑖 ≤

∑︁
𝑖∈SCI

𝑂𝑖 .

Since total carbon emissions include both embodied and op-
erational phases, oSCI ensures the lowest footprint across
purchase and operation. While extending this example to
dynamic job arrivals shows similar results, a detailed explo-
ration of that scenario is beyond this paper’s scope and will
be addressed in future work.
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Table 4: List of servers and their specifications for the case study. The server life is 5 years; for older than 5 years
old servers embodied carbon is amortized over years since purchase. The operational carbon is for 5 years at a
carbon intensity of 10 g.CO2/kWh (chosen such that embodied carbon accounts for 20% of the lifecycle emissions).
Processor Purchase Server Technology Embodied Carbon Performance & Power Operational Carbon Carbon (g.CO2 /Score-Yr)

Year Count Node (KgCO2) PassMark TDP (W) Cores Threads (KgCO2) M O SCI

Xeon-Silver-4216 2020 59 14 24.15 20613 100 16 32 43.80 0.234 0.425 0.659
Xeon-Silver-4116 2019 109 14 21.18 14660 85 12 24 37.23 0.289 0.508 0.797
Xeon-E5-2640v4 2016 54 14 19.08 12472 90 10 20 39.42 0.194 0.632 0.826
Xeon-E5-2640v3 2015 65 22 19.36 11118 90 8 16 39.42 0.183 0.709 0.892
Xeon-E5-2650v2 2014 36 22 09.44 9866 95 8 16 41.61 0.096 0.844 0.939
Xeon-E5-2620-v4 2017 30 14 13.47 9193 85 8 16 37.23 0.209 0.810 1.019
Xeon-Gold-6326 2021 68 10 101.0 35270 185 16 32 81.03 0.573 0.459 1.032
Xeon-E5640 2012 47 32 11.39 3782 80 4 8 35.04 0.251 1.853 2.104
Xeon-E5620 2010 52 32 12.71 3590 80 4 8 35.04 0.253 1.952 2.205
Xeon-E5-2609-v2 2014 22 22 10.49 3369 80 4 4 35.04 0.312 2.080 2.392
Xeon-X5647 2012 82 32 13.45 4441 130 4 8 56.94 0.253 2.564 2.818
Xeon-E5520 2010 25 45 12.12 2524 80 4 8 35.04 0.343 2.777 3.120
Xeon-E5410 2008 43 65 11.75 2007 80 4 4 35.04 0.365 3.492 3.857
Xeon-E5335 2007 28 65 13.45 1549 80 4 4 35.04 0.542 4.524 5.066
Xeon-E5310 2007 20 65 14.19 1306 80 4 4 35.04 0.639 5.366 6.005

Total – 740 – 17632.71 8261198 74045 6204 11956 – – – –

4 AN ACADEMIC DATACENTER STUDY
In the previous section, we used a simple example of two
servers to illustrate how different metrics, server specifica-
tions, datacenter characteristics, and accounting practices
influence the sunk carbon fallacy. In this case study, we an-
alyze a real-world MIT academic datacenter that supports
scientific computing workloads [33, 34]. This study shows
that the sunk carbon fallacy is not limited to simple exam-
ples but also occurs in real-world datacenters with diverse
servers. Our analysis assumes that carbon-aware scheduling
minimizes the total cluster-level carbon footprint—embodied
and operational—when running jobs on available servers.
1 – Case Study Setup.We follow the setup from Section 3.2,
with some modifications. Table 4 details the servers’ speci-
fications, which include 15 different processor types across
740 servers, with an average server age of 9.5 years. The old-
est servers (E5310, E5335) are 17 years old, while the newest
(Gold-6326) are 3 years old. Only 31.9% of servers are less
than five years old. All processors are from Intel, using 64nm
to 10nm technology nodes. The processors’ embodied carbon
ranges from 9.44 KgCO2 to 101.0 KgCO2, with a total of 17,633
KgCO2. PassMark scores (multi-threaded) vary from 1306 for
the oldest (E5310) to 35,270 for the newest (Gold-6326), and
TDP values range from 80W (E5310) to 185W (Gold-6326).

We assume a server lifespan of 5 years. However, academic
clusters often keep servers operational beyond this due to fac-
tors beyond performance and cost. We use two approaches
to account for embodied carbon: 1) setting the embodied
carbon of servers older than five years to 0, and 2) amortiz-
ing embodied carbon over the server’s lifespan. We use the
second approach in Table 4, as setting it to 0 for older servers
would artificially inflate the sunk carbon fallacy. We use a
dataset of 14 million jobs collected in 2016, from MGHPCC

cluster [4, 5], including information on job submission times,
end times, requested core, and memory. For comparable per-
formance across the heterogeneous machines, we normalize
the machines by thread count and create three virtual core
categories shown in Figure 6: VC1 includes 13.1% of threads
with a performance score of 250–500, VC2 includes 68.9%
of threads with a score of 550–700 (2×), and VC3 includes
18.2% of threads with a score of 750–1000 (3×). Since the
largest server in our case study datacenter has 32 threads,
we filter out all jobs requiring more than 32 cores.
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2 – Case Study Findings. 2 – Case Study Findings.
Table 4 presents the SCI values for servers sorted by as-
cending SCI, reflecting their energy-efficient ordering. For
instance, according to the SCI metric, Xeon-E5-2620-v4
would be selected over Xeon-Gold-6326, even though
the former has a 1.37× higher carbon footprint. While
Xeon-Gold-6326 is the second most energy-efficient server,
it ranks 7th in SCI. Similar inefficiencies occur, such as choos-
ing Xeon-E5-2620-v4 over Xeon-E5-2650-v2 due to lower
embodied carbon. If the embodied carbon of servers older
than five years is set to 0, the rankings shift even more, with
the three most efficient servers—Silver-4216, Gold-6326,
and Silver-4116—ranked 2nd, 7th, and 4th, respectively.

Though seemingly minor, these ranking changes can sig-
nificantly increase the datacenter’s carbon footprint when
using SCI. We calculate the added carbon under SCI and
oSCI to evaluate the cluster-level impact. Jobs are placed on
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Figure 7: Embodied amor-
tized across the lifespan.
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Figure 8: Embodied amor-
tized in the first 5 years.

servers based on their submission time in a one-time place-
ment, mimicking long-running jobs that never finish. Each
job requires a specific number of virtual cores, and multiple
jobs can share a server to avoid stranding resources. A trace
replay and placement simulation is beyond the scope.
Figure 7 and Figure 8 show the added carbon due to SCI

for two embodied carbon amortization approaches. In both
cases, using SCI increases the datacenter’s carbon footprint
by nearly 30%, driven by the use of energy-inefficient servers.
Under the first amortization approach, added carbon exceeds
5% when datacenter utilization ranges from 27% to 78%, a
typical range for most datacenters. The second approach
leads to even higher added carbon (often above 10%) over a
wider utilization range of 13% to 80%. These results highlight
how small changes in server selection order can significantly
impact the overall carbon footprint. This analysis also reveals
how SCI is susceptible to arbitrary choices in setting server
lifespan expectations. Given that the cluster utilization in our
job trace ranges from 40% to 80%, using SCI would result in
a carbon footprint increase of at least 15%. Notably, the first
amortization approach results in double-counting embodied
carbon, which is already accounted for in the initial 5 years.

5 IMPLICATIONS AND CONCLUSION
Next, we discuss the implications of using the three carbon-
based metrics in on-premise and cloud datacenters.

SCI quantifies the total carbon footprint of a functional
unit by incorporating both operational and embodied emis-
sions. While SCI is intuitive and comprehensive, it is unsuit-
able for all decisions. The metric assumes that any increase
in a server’s embodied carbon must be offset by an equal or
greater reduction in operational emissions for the server to
be favored over a reference. However, because embodied and
operational carbon occur on different timescales, arbitrary
settings for server lifespan and embodied carbon account-
ing can distort this ratio. As shown in Figs. 4–8, varying
approaches to embodied carbon accounting and expected
lifespans can non-intuitively change operational carbon.
One key aspect of SCI is that it incentivizes using older

hardware, which often has a much lower embodied carbon
per performance score due to being built with older, less
energy-intensive technology.While advancements in smaller
technology nodes have increased performance per unit area,
they haven’t always improved energy efficiency enough to

offset the higher embodied carbon of newer servers. As
shown in Table 4, this can make older servers attractive,
especially once their embodied carbon has been amortized
over their expected lifespan. In the worst case, this leads
to older, less efficient servers being used for base demand,
while newer, more efficient servers are reserved for infre-
quent peaks. Although SCI encourages using older servers,
it inadvertently promotes a strategy where new servers are
purchased but not fully utilized until they age. While extend-
ing hardware life is important, relying on older servers for
base demand is not. Older hardware should be kept, but it
should only be used during peak demand. Using SCI to justify
increased operational carbon is counterproductive. Our anal-
ysis suggests that job scheduling should be decoupled from
procurement decisions. SCI can be useful for procurement
teams when replacing existing servers, helping them select
new servers with lower SCI values. However, purchasing
for new capabilities—such as supporting emerging work-
loads that require new hardware—should be SCI-agnostic.
Once new servers are procured, their embodied carbon has
occurred, and the focus should shift to operational carbon.

The unified approach of tSCI simplifies carbon cost alloca-
tion by aligning accounting and scheduling practices. How-
ever, due to variability in manufacturing processes, supply
chains, and data quality, the uncertainty surrounding embod-
ied carbon estimates makes it difficult to rely on such metrics
for scheduling decisions. Introducing this uncertainty into
an otherwise precise operational carbon calculation can lead
to suboptimal prioritization. Also, as discussed in Section 3.2,
tracking and computing tSCI over time in large-scale infras-
tructures, like public clouds, introduces significant overhead,
limiting its practicality for real-time scheduling.

oSCI is the most effective metric for carbon-aware sched-
uling, as operational carbon is the primary factor that can
be optimized, and hardware replacement decisions fall out-
side the scope of scheduling. Focusing on oSCI ensures that
scheduling decisions minimize operational emissions, which
is the only carbon cost that can be directly controlled after
procurement. Hardware replacement, which impacts embod-
ied carbon, should be handled separately from scheduling.
By using oSCI, both on-premise and cloud datacenters can re-
duce operational costs by selecting the most energy-efficient
servers and avoiding the sunk carbon fallacy.
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