
Caribou: Fine-Grained Geospatial Shifting of
Serverless Applications for Sustainability

Viktor Gsteiger∗, Pin Hong (Daniel) Long
Yiran (Jerry) Sun, Parshan Javanrood

Mohammad Shahrad
University of British Columbia

Abstract
Sustainability in computing is critical as environmental con-
cerns rise. The cloud industry’s carbon footprint is signifi-
cant and rapidly growing. We show that dynamic geospatial
shifting of cloud workloads to regions with lower carbon
emission energy sources, particularly formore portable cloud
workloads such as serverless applications, has a high poten-
tial to lower operational carbon emissions. To make the case,
we build a comprehensive framework called Caribou that
offloads serverless workflows across geo-distributed regions.
Caribou requires no change in the application logic, nor on
the provider side. It dynamically determines the best deploy-
ment plans, automatically (re-) deploys functions to appropri-
ate regions, and redirects traffic to new endpoints. In reduc-
ing operational carbon through fine-grained, function-level
offloading, Caribou does not undermine standard metrics
such as performance and cost. We show how this approach
can reduce the carbon footprint by an average of 22.9% to
66.6% across the North American continent. We demonstrate
how a detailed specification of location constraints (e.g., to
ensure compliance of one stage) can allow emission reduc-
tions for workflows (e.g., by offloading other stages). By
showcasing the feasibility of carbon-aware geospatial appli-
cation deployment, Caribou aims to push the boundaries
of system techniques available to curtail cloud carbon emis-
sions and provide a framework for future research.

CCS Concepts: • Computer systems organization →
Cloud computing; • Social and professional topics→
Sustainability.

Keywords: Sustainability, Geospatial Shifting, Carbon-Aware
Scheduling, Serverless Computing, Cloud Computing

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
SOSP ’24, November 4–6, 2024, Austin, TX, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 979-8-4007-1251-7/24/11
https://doi.org/10.1145/3694715.3695954

a. Status Quo b. Carbon-Aware
Deployment Hour A

c. Carbon-Aware
Deployment Hour B

Figure 1. Serverless workflows by default have single-region
deployments. This paper explores dynamic carbon-aware
deployment, considering latency, cost, and data compliance.

ACM Reference Format:
Viktor Gsteiger, Pin Hong (Daniel) Long, Yiran (Jerry) Sun, Parshan
Javanrood, and Mohammad Shahrad. 2024. Caribou: Fine-Grained
Geospatial Shifting of Serverless Applications for Sustainability.
In ACM SIGOPS 30th Symposium on Operating Systems Principles
(SOSP ’24), November 4–6, 2024, Austin, TX, USA. ACM, New York,
NY, USA, 18 pages. https://doi.org/10.1145/3694715.3695954

1 Introduction
The urgency of adopting sustainable computing practices
has become increasingly evident in light of global energy
disparities and the escalating environmental footprint of
technological advancements. Estimations from recent stud-
ies have put the Information and Communication Technol-
ogy (ICT) sector’s carbon footprint at approximately 1.5% to
4% [1, 16, 23, 74, 76] of worldwide carbon emissions. Addi-
tionally, US electricity demand is rising again after a plateau
around the mid-2000s, fueled mainly by the changes in com-
puting demand due tomore remote work, streaming, and arti-
ficial intelligence [31, 47, 73, 78]. Low-carbon energy sources
cannot fully cover this increase in power demand [82]. This
revelation underscores a critical need to address the carbon
emissions associated with cloud applications.
While providers increasingly claim carbon neutrality for

their operations, mostly by relying on Renewable Energy
Credits (RECs), this still falls short of ensuring the direct use
of renewable energy [2, 41, 66], as datacenters are tied to
their local power grid. Due to different energy sources, each
power grid has different carbon intensities, often fluctuating
over daily and seasonal periods. This opens an avenue for

* Affiliated with ETH Zürich, Gsteiger conducted the research at UBC.

https://doi.org/10.1145/3694715.3695954
https://doi.org/10.1145/3694715.3695954

optimization by moving workloads to datacenters in low-
carbon intensity regions. Providers might reallocate work-
loads within regions to optimize for carbon efficiency [42, 80].
However, cross-regional shifts, that could yield more sub-
stantial carbon savings, are not pursued [22, 107] due to a
lack of tools for communicating and techniques for enforcing
various constraints such as regulatory or end-to-end latency.

Today’s complex cloud applications often face geographi-
cal constraints due to regulatory requirements, such as GDPR
in Europe, HIPAA in the US, or PIPEDA in Canada. In such
cases, the state of the practice is to deploy the entire applica-
tion to a "sticky" region, as shown in Fig. 1a. Even without
compliance requirements, the latency requirements can limit
geographical mobility. Emerging proposals for Sky Comput-
ing [19, 29, 106] enable multi-region and multi-cloud deploy-
ments, highlighting a shift towards more dynamism, but
currently falls short of considering carbon. A carbon-aware
framework must contend with the challenge of constantly
fluctuating carbon intensity across regions. Migrating work-
loads from one region to another (Fig. 1b & 1c) to leverage
low carbon swings, and doing so by considering latency, cost,
transmission carbon, and changing workload profiles adds
new dimensions to the problem. Additionally, data locality
cannot be ignored since accessing remote data incurs carbon,
latency, and potentially cost. In this regime, automation of
such distributed deployments becomes a necessity rather
than a luxury.
In response to the critical need for sustainable comput-

ing practices amidst growing environmental concerns, the
complexity inherent in modern cloud applications, and the
nascent opportunities for computational geospatial mobility,
this paper introduces Caribou1,2. Caribou is a framework
for multi-region serverless application deployment that ad-
dresses both the environmental footprint of cloud computing
and the regulatory and logistical challenges associated with
data mobility across geographical boundaries. In addition to
targeting carbon emissions of serverless, a popular cloud par-
adigm, Caribou is positioned as a case study of the potential
for serverless to serve as a model for sustainable cloud prac-
tices. In doing so, it contributes to the ongoing community
dialogue on the feasibility of integrating sustainability into
the fabric of cloud computing infrastructures. This paper
advances sustainable cloud computing with the following
key contributions:
• We introduce a comprehensive framework, called Cari-
bou, to help developers automatically deploy complex
serverless workflows across globally distributed regions.
• We show how to leverage the grid carbon intensity vari-
ations across regions to reduce the carbon footprint of
serverless workflows. This is the first framework to

1Carbon Aware SeRverless GeospatIal Balancing DeplOyment Utility
2Available at https://github.com/ubc-cirrus-lab/caribou

holistically consider the carbon effect of data trans-
mission, latency and cost implications of migration,
and overhead of the control logic.
• We conduct a comprehensive evaluation of Caribou on
the leading serverless offering, AWS Lambda. Using a
range of benchmark applicationswith real carbon intensity
data, we show that the framework can adapt to changing
carbon intensity patterns and harness these differences
to reduce the carbon emissions of cloud applications—by
an average of 22.9% to 66.6% across the North American
continent.

2 Background and Motivation
This section motivates a comprehensive cross-regional de-
ployment framework.

2.1 Carbon Intensity Variances in Electrical Grids
Carbon intensity, measured in grams of 𝐶𝑂2-𝑒𝑞, represents
the equivalent carbon emission of different greenhouse gases
and their potential for global warming over a common time
period [77]. It is used to compare the environmental footprint
of different energy productionmethods. The carbon intensity
of different electrical grids can vary significantly due to the
energy sources and transmission efficiency of each grid [26,
80]. What does this mean for cloud systems? Let us consider
a leading cloud provider, Amazon Web Services (AWS), with
six public regions in North America [12]. Fig. 2 illustrates
the historical carbon intensity of four of these regions (ca-
west-1 rolled out in 2024, us-east-1, and us-east-2 are
on the same grid). It can be observed that:
• Grid carbon intensity varies widely due to the local energy
sources of each location. ca-central-1 enjoys low inten-
sity since its grid is mostly powered by hydroelectric [25].
us-east-1 and us-east-2 have the highest carbon in-
tensity but are favored due to their proximity to large
population centers. Switching from either of those to ca-
central-1 or to one of the western regions enables using
low-intensity grids. However, the former has data compli-
ance implications (data leaving the US to Canada), and the
latter incurs large data transmission overheads.
• Carbon intensity follows a diurnal pattern. This pattern is
amplified in us-west-1with a solar-heavy grid, leading to
much greater carbon intensity at night compared to days.
This motivates shifting workloads to daytime, or greener
regions (e.g., ca-central-1 with consistently low carbon
intensity). The possibility of both depends on the nature
of the workload and its QoS expectations.
• Carbon footprints and patterns vary across nearby regions.
us-west-1 (California) and us-west-2 (Oregon) are ge-
ographically close but observe different carbon intensity
patterns.

These observations are even more pronounced globally, due
to the increased diversity of energy sources, full daily lag for

https://github.com/ubc-cirrus-lab/caribou

Jul Aug Sep Oct Nov Dec Jan
2024

Date

0

100

200

300

400

500

Ca
rb

on
 In

te
ns

ity
 (g

CO
2e

q/
kW

h)

us-east-1
us-west-2
us-west-1
ca-central-104

Aug
2023

1005 06 07 08 090

500

15
Oct

2023

2116 17 18 19 200

500

Figure 2. The carbon intensity of four of the six public AWS locations in North America from July 2023 to January 2024. Two
week-long windows are chosen to better highlight short-term variability. (source: Electricity Maps [38])

solar generation, and opposite seasons in the northern and
southern hemispheres. Similarly, there are many other cloud
providers besides AWS operating globally.

2.2 State of the Art
The insights presented in §2.1 allude to optimization oppor-
tunities to reduce the carbon footprint of cloud workloads.
The most straightforward is making static decisions, such as
prioritizing low-carbon regions for building new datacenters
or determining regions based on provider-reported carbon
efficiency (Salesforce reported prioritizing locations based on
Google’s reported carbon efficiency metric [57]). However,
such static approaches can only bring about slow positive
change and fall short of mitigating the exponential rise in car-
bon footprint associated with cloud services. Orthogonally,
two classes of dynamic resource provisioning techniques
offer paradigm change in carbon-aware optimizations in the
cloud: temporal and geospatial workload shifting.
Temporal shifting leverages the variability in carbon in-

tensity or load in a region over time by delaying the exe-
cution of latency-tolerant workloads to periods with lower
carbon intensity. Recent studies have showcased its high
potential as well as inherent constraints for carbon reduc-
tion [32, 46, 62, 64, 81, 87, 103]. Conversely, geospatial shift-
ing deploys workloads in locations with lower carbon inten-
sity, offering potential benefits to different classes of appli-
cations and broadening the optimization space. While not
a new idea [4, 91, 114], geospatial shifting is only gaining
serious research traction recently [29, 113] with additional
work focused on its limitations and benefits [95, 96]. Unsur-
prisingly, geospatial shifting involves additional operational
challenges around workload and data migration; the cost,
performance, and carbon overhead of these can surpass the
gains if done naively.
Prior research on geospatial shifting has predominantly

viewed the challenge through the lens of cloud providers and
workload balancing [3, 4, 26, 60, 61, 99, 111]. Some providers
report to migrate internal workloads geospatially to reduce

emissions [43]. This feature is currently not offered to end-
users. Migrating client workloads beyond the boundaries of
one region remains a complex, underexplored frontier.

2.3 Viability of Geospatial Shifting
The feasibility of geospatial shifting hinges on a myriad of
factors, each with its own set of implications.
Compatibility: The varying hardware and software com-
patibility between cloud providers and between regions of
the same provider can preclude the migration of workloads.
Cost: A viable geospatial shifting strategy must take into
account the cost implications of migration. There are dif-
ferences in the cost of computation between providers and
even across regions of the same provider [75]. There are
also cost implications for data transfer, in the form of egress
fees [49, 55] charged even for intra-provider transfers.
Latency: The latency variation introduced by different hard-
ware, software, and loads (relative pressure by co-tenants) in
various regions and the transmission latency due to sticky
data or traffic source/sink cannot be ignored.
Carbon:A geospatial shifting strategy aware of or optimized
for carbon footprint reduction must consider the balance be-
tween carbon savings from shifting computing, the carbon
cost of data transmission, and any added operational over-
head, where the carbon savings from offloading execution
might not justify the transmission or overhead carbon costs.
Compliance: It is crucial to consider legal and political
boundaries, such as data residency laws. These impose re-
strictions on certain data/compute movements, necessitating
a fine-grained deployment framework capable of navigating
these complexities.
Complexity:Modern cloud applications are complex net-
works of interconnected services and dependencies within
and beyond application boundaries. Accounting for this com-
plexity is crucial for a viable shifting solution.
The need for a holistic approach. A viable geospatial
shifting strategy must consider these complex and dynamic
factors. These factors vary between different applications,

Text To
Speech

Profanity
Detection

Encoding

Censor

Text Upload

Can be
Offloaded

Latency
Sensitive

Regulation
Sensitive

Validation

Client

Figure 3. Text2Speech Censoring Serverless Application.
Dashed functions and edges are off the critical path and can
be offloaded without increasing end-to-end latency.

at different times, and for different users. Therefore, a holis-
tic solution that intricately balances the trade-offs between
carbon efficiency and the operational intricacies of complex
cloud applications is desired.

2.4 Serverless: A Great Candidate for Geo-Shifting
Given the diverse service models offered by cloud service
providers, it is almost impossible to devise a one-size-fits-all
framework to universally unlock the potential of geospatial
shifting. As "perfect is the enemy of good", we believe the field
would benefit from paving the way with a focus on a suitable
cloud workload first, to develop necessary techniques and
uncover challenges. With this philosophy, this work inves-
tigates one of the most suitable cloud service models for
geospatial shifting: serverless. Here is why we believe so:
1. Serverless is a popular paradigm, currently used by the

majority of organizations using cloud [33]. Serverless ap-
plications are more energy-hungry than native execution
(more than 15x [90]), ideal for emission reduction.

2. Serverless functions are primarily stateless, and storage
is often disaggregated from compute. This allows for fast
and reliable re-deployment to new regions.

3. Serverless functions are short-lived and popular applica-
tions with high traffic volume [51, 65, 89]. For frequently
invoked, lightweight workloads (e.g., serverless), rapid
learning from past executions and tolerating suboptimal
offloading are far simpler than with infrequent, heavy-
weight workloads (e.g., training recommendation models
on GPU clusters).

4. The complexity of serverless applications is on the rise. For
instance, serverless directed acyclic graph (DAG) adoption
in Azure grew 600% between 2019 and 2022 [65]. Increased
complexity presents opportunities for exploitation, such
as the ability to delay execution of functions not on the
critical path of latency [86].

To illustrate the challenges described in §2.3, let us intro-
duce an example workflow that turns text input into speech
while censoring profanity (Fig. 3). Each text undergoes vali-
dation to ensure it contains no illegal content and is region-
restricted to minimize liability. The text is then turned into

Deployment
Solver

Deployment
Migrator

Deployment
Utility

Deployment
Manager

Re-Deploys

Deploys

Developer End-User

Invokes
Deployed
Workflow

Metrics Manager

Carbon

Forecasting

PricingLogs

Workflow
Aggregation

Transmission
Latency ...

Figure 4. Caribou framework overview: Red indicates the
user-facing component and blue represents framework com-
ponents associated with geospatial shifting. Orange shows
raw data sources and yellow indicates data-processing.

speech and conversed into wav format. The workflow identi-
fies profanities in parallel. The longer path is computation-
ally more expensive and is on the application’s critical path,
limiting the ability to offload with stringent QoS constraints
due to network latency. A fine-grained offloading framework
can (depending on input) assign the profanity identification
task to lower carbon regions with no QoS violations.

3 Caribou: A Holistic Framework for
Geospatial Shifting

To leverage the grid carbon variations across regions while
providing a feature-rich framework that enables a large host
of future research, we present Caribou, a middleware or-
chestration framework that transparently facilitates man-
aging the relationship between providers, developers, and
end-users. This Framework, illustrated in Fig. 4, provides the
required infrastructure to answer the following questions for
carbon-aware geospatial shifting of serverless workflows:
• Structure: What application structures (§4) can be de-
fined, and how does this structure relate to the geospatial
deployment?
• Policy: How (§5.1) and when (§5.2) should the frame-
work determine a new geospatial deployment that enables
the most, overhead aware, carbon reductions given the
workflow constraints?
• Enforcement: How to materialize the above policy to
geospatially deploy (§6.1) and invoke (§6.2)?
• Metrics:Whatmetrics (§7.1) should the policy rely on?
What data sources (§7.2) can provide those? What steps
are required to gather metrics from raw data?
• Interface: How to define intuitive and powerful APIs
and interfaces (§8) for such a framework?

Caribou is implemented in Python and Go, with 22K and
4.3K SLOC, respectively. All framework components can be

deployed as individual serverless functions. The components
interact asynchronously through a distributed key-value
store. The current implementation is fully tested on AWS,
the leading serverless provider.

4 Workflow Model
Caribou uses a workflow model that encompasses a broad
range of serverless applications, from those with a single
function to complex ones with many conditionally intercon-
nected functions. In doing so, we consider the structure, data,
and control flow of target applications as well as require-
ments for geospatial shifting. The structure of a workflow
is implicitly defined by a developer using our API (§8) and
a workflow is then extracted from the source code through
static code analysis at initial deployment of a workflow (§6.1).
A workflow is defined as a DAG 𝐺 = (𝑁, 𝐸), where 𝑁

is a set of nodes and 𝐸 is a set of edges. The edge 𝑒𝑖 𝑗 ∈ 𝐸

represents execution dependencies between nodes 𝑛𝑖 , 𝑛 𝑗 ∈
𝑁 where 𝑛 𝑗 depends on the execution of 𝑛𝑖 . Each source
code function (𝑠𝑘) can be associated with multiple execution
stages in the workflow. To make the workflow representa-
tion acyclic, each execution stage is represented as a separate
node (𝑛𝑖) in the DAG. Each node (𝑛𝑖) has an associated de-
ployment region 𝑟𝑖 ∈ 𝑅, where R is the set of regions. Let
𝜓 : 𝑁 ↦→ 𝑅 be the mapping of DAG nodes to regions, referred
to as a deployment plan (DP) in this paper.

Every node (𝑛𝑖) has a set of incoming and a set of outgoing
edges, 𝐸𝑖𝑛 (𝑛𝑖) and 𝐸𝑜𝑢𝑡 (𝑛𝑖), respectively. If 𝐸𝑖𝑛 (𝑛𝑖) = ∅, the
node is a start node. We only consider workflows with ex-
actly one start node since this is the most common structure.
Additionally, if |𝐸𝑖𝑛 (𝑛𝑖) | > 1, the node is a synchronization
node. Any edge 𝑒𝑖 𝑗 is annotated with a Boolean value that
captures if the edge is invoked (𝐶 : 𝐸 ↦→ {0, 1}).
Synchronization nodes: When invoking a synchroniza-
tion node 𝑛 𝑗 through 𝑒𝑖 𝑗 , the predecessor invocation of 𝑛𝑖
is required to atomically update an annotation associated
with 𝑒𝑖 𝑗 . After updating the annotation atomically, 𝑛𝑖 has
to check if the condition for executing 𝑛 𝑗 is true, and if so,
invoke 𝑛 𝑗 ; else do nothing. The condition for executing the
synchronization node is:
(∀𝑒𝑖 𝑗 ∈ 𝐸𝑖𝑛 (𝑛 𝑗),𝐶 (𝑒𝑖 𝑗) ≠ ∅) ∧ (∃𝑒𝑘 𝑗 ∈ 𝐸𝑖𝑛 (𝑛 𝑗) : 𝐶 (𝑒𝑘 𝑗) = 1)

(4.1)
This process is shown in the right section of Fig. 5, where 𝑛1
and 𝑛2 invoke the synchronization node (𝑛3) through storing
intermediate data, small-scale information passed between
DAG nodes to communicate data passed through remote
storage [65], and annotation in the key-value store. In this
example, 𝑛1 is the node checking the condition last and is
responsible for invoking 𝑛3. The synchronization node then
loads the intermediate data from the predecessors from the
key-value store.

n4

n3

n2n1

s0

Source Code

n0

DAG Representation

Fetch current D
P

n0

Header

HeaderHeader

Header

Invocation

Invocation

Invoke with data
& DP

Deployed Workflow

Workflow Invocation in region 1

edge
conditional edge

pub/sub message
distributed key-value access

Distributed
Key-Value

Store

Header

Invocation Invocation

s1 n1 n2

s2

n3

s3

n4
Store Data & Retrieve

Invocation Count

Retrieve Data

Static Code Analysis

Invocation Client

Figure 5. Caribou converts the annotated workflow to a
DAG and deploys each stage to an optimal region.

Conditional DAGs: The above semantics enable condi-
tional branches, needed to support serverless DAGs with
conditional edges [63, 85]. Supporting conditional DAGs
adds some complexity. Handling the case where all incom-
ing edges to a node are unconditional, i.e., always taken
(∀𝑒𝑖 𝑗 ∈ 𝐸𝑖𝑛 (𝑛 𝑗),𝐶 (𝑒𝑖 𝑗) = 1), is straightforward:𝑛 𝑗 is executed
when all predecessor nodes are executed. For a conditional
branch (𝑒𝑖 𝑗), a predecessor node (𝑛𝑖) marks 𝐶 (𝑒𝑖 𝑗) = 0 when
the trigger condition of the edge is not satisfied. In this case:
(1) for all paths between 𝑛 𝑗 to any synchronization node 𝑛𝑠 ,
set 𝐶 (𝑒𝑡𝑠) = 0 if 𝑛𝑡 is on 𝑃𝑎𝑡ℎ(𝑛 𝑗 , 𝑛𝑠) and has edge 𝑒𝑡𝑠 ;
(2) 𝑛𝑖 checks if 𝑛𝑠 now fulfills the condition to be invoked.

5 Policy
5.1 Determining Optimal Deployment Plan
The fundamental policy decision Caribou makes is the de-
ployment plan (DP in §4), i.e., where to deploy each workflow
stage. The Deployment Solver determines the optimal DP
based on the DAG structure and the corresponding perfor-
mance, carbon, and cost metrics (§7.1). To capture the diurnal
carbon patterns, 24 plans are generated per solve—one for
each hour, given sufficient carbon budget (§5.2). For a work-
flow with execution stages 𝑁 and available regions 𝑅, the
search space is |𝑅 | |𝑁 | , growing exponentially with increasing
workflow complexity and regions. Compliance constraints
can narrow this search space, but the complexity explosion
persists. Since the goal of Caribou is to reduce the carbon
footprint of serverless applications, the DP solver must also
have low computational requirements. A simple approach to
tame the search space is to limit the deployment of all DAG
nodes to the same region, reducing the solver complexity to
𝑂 (|𝑅 |). However, this approach can be globally suboptimal

Algorithm 1 HBSS algorithm used for finding optimal DP.
𝛼 is number of iterations, 𝛽 is bias, and 𝛾 is temperature.
1: function HBSS(𝐷𝑒𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡𝑠, 𝐻𝑜𝑚𝑒𝑅𝑒𝑔𝑖𝑜𝑛𝐷𝑒𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡)
2: 𝛼 ← |N| × |R| × 6, 𝛽 ← 0.2
3: 𝛾 ← 1.0, 𝑖 ← 0, 𝐶𝐷 ← 𝐻𝑜𝑚𝑒𝑅𝑒𝑔𝑖𝑜𝑛𝐷𝑒𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡

4: while 𝑖 < 𝛼 do
5: 𝑁𝐷 ← GenNewDeplWBias(𝐶𝐷 , 𝛽), i++
6: if ToleranceViolated(𝑁𝐷) then continue
7: if 𝑁𝐷.𝑚𝑒𝑡𝑟𝑖𝑐 < 𝐶𝐷.𝑚𝑒𝑡𝑟𝑖𝑐 orMut(𝛾 , CD, ND) then
8: 𝐶𝐷 ← 𝑁𝐷 , 𝛾 ← 𝛾 × 0.99, 𝐷𝑒𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡𝑠.𝑎𝑑𝑑 (𝑁𝐷)
9: if len(𝐷𝑒𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡𝑠) == |𝑅 | |𝑁 | then break
10: functionMut(𝛾 , CD, ND) ⊲ Stochastic Mutation
11: Δ← ∀|𝐶𝐷.𝑚𝑒𝑡𝑟𝑖𝑐 − 𝑁𝐷.𝑚𝑒𝑡𝑟𝑖𝑐 |
12: return Random < 𝑒

− Δ
𝛾

for not 1) deploying nodes off the critical path to remote,
low-carbon regions and 2) deploying nodes without data
compliance requirements to foreign, low-carbon regions.

Implementing the solver using a breadth-first search (BFS)
strategy proved intractable and resource-inefficient. We de-
cided on a Heuristic-biased Stochastic Sampling (HBSS) al-
gorithm [24, 45], outlined in Alg. 1. It employs heuristics
to explore new deployments and tests for improvement,
leveraging the information obtained as a region bias. The
search terminates either after the complete exploration of
the search space or after 𝛼 iterations, where 𝛼 depends on
DAG size and region count and is dynamically adjusted to
fit in AWS Lambda’s 900-second limit when deployed as a
serverless function. The algorithm’s hyper-parameters were
determined empirically. The developer indicates their pre-
ferred optimization priority between carbon, cost, or latency
(§8). This is then used to determine the best solutions from
the generated deployments.

5.2 Dynamic Triggering of Policy Determination
Caribou incurs overheads primarily from DP generation
(§5.1) that is computationally heavy, and metrics collection
(§7.2) and deployment migration (§6.1) that are data trans-
mission heavy. To offer net gains, the carbon overhead of
these factors must remain lower than the carbon savings
achieved by geo-shifting the workload. On the one hand,
the framework’s deployment region and the frequency of
generating DPs influence the overhead carbon emissions. On
the other hand, the carbon differential between the home
and offload region(s), together with the workflow traffic vol-
ume, affects the potential carbon savings. A dynamic control
mechanism to trigger the deployment determination is re-
quired to balance the two varying effects. To hit a balance
between generating new, potentially more optimal DPs and
the system overhead,Caribou uses a token bucket algorithm
to self-regulate DP generation frequency. This frequency is
enforced through token check times; when a check is due and

Deployment
Manager

Tokens
Sufficient

New

Check
Time

Elapsed

N

Y Collect
Metrics

Calculate
Tokens

Solve
Deployment

Determine
Check Time

Y

DP Staging
Area

Y

Update

Metrics
Deployed

Applications

N

Continue
with next

N

Get Metrics

Update

Figure 6. Caribou dynamically determines the DP genera-
tion trigger frequency with a token bucket algorithm. Blue
signifies system components, violet condition checks, and
yellow actions taken by the system.

a pre-determined deployment exists that deployment is ex-
pired, and all traffic is routed to the home region. DPs expire
to account for the dynamic factors influencing optimality,
such as fluctuation in carbon intensities, changes in pric-
ing, and varying workflow distributions. Tokens represent
the carbon budget for system overhead, and the framework
consumes them when the bucket contains enough tokens
for determining new deployments. Tokens are earned dy-
namically based on invocations in past periods and realized
workflow carbon savings. The cost of a DP generation is de-
termined based on workflow structure and the framework’s
region carbon intensity. The granularity of the generated
DP depends on the carbon budget; it can vary from a daily
deployment based on daily carbon forecasts to more granular
hourly deployments using hourly forecasts.

Fig. 6 illustrates the self-adaptive process, orchestrated by
the Deployment Manager (DM). The DM regularly iterates
over all deployed workflows, going through the following
process: If a workflow is new or an existing workflow DP
requires a token check, workflow metrics will be collected.
Functionswith higher invocation counts and longer runtimes
accumulate more tokens. Each token represents the carbon
intensity differential between target regions, allowing us to
estimate the carbon budget. This calculation assumes that
the number of invocations and average runtime in the next
period will be similar to the last period, without considering
any earlier periods, effectively applying a sliding-window
to catch sudden changes in metrics. Similarly, the cost of
generating a new DP is estimated by the complexity of the
application, with more complex DAGs incurring higher gen-
eration costs. The current carbon budget is then compared
to the DP generation costs. If there are sufficient tokens, a
new DP is generated. Regardless of the outcome, the next to-
ken check time is determined by the difference between the
token generation rate and current bucket content, smoothed
by a sigmoid function, to ensure that the next check aligns
with the invocation rate of the past period.

6 Enforcement
6.1 Automated Cross-Regional Deployment
Caribou automatically manages cross-regional function exe-
cution and (re-)deploys the functions to appropriate regions.

Initial Deployment. Developers can initialize the deploy-
ment of a workflow using the Deployment Utility Command
Line Interface (CLI) of the caribou Python package. Cari-
bou automatically packages the source code into Docker
images to facilitate seamless cross-regional deployment, sup-
port more complex dependencies, and establish a shared
execution environment irrespective of the deployed region
(§2.3 Compatibility). This process automatically deploys a
workflow for the first time to the developer-defined home
region that precedes the framework’s dynamic deployments
and acts both as a fallback and a baseline. The home region is
ideally the default deployment location without our adaptive
framework. The deployment utility then works through the
following steps to deploy the workflow functions:
1. Through static analysis on the source code directory, it

generates the workflow DAG (Fig. 5);
2. The utility creates the necessary Identity and Access Man-

agement (IAM) roles and permissions, pushes the Docker
image to the container registry, and creates the function
and messaging services (e.g., AWS SNS) where each func-
tion is subscribed to one topic in its respective region;

3. It uploadsmetadata, such as DP for this workflow, required
by other framework components to the distributed key-
value store.

Re-Deployment. Automating migrations to new regions is
necessary to maximize carbon emission reductions without
burdening developers. The Deployment Migrator solves this
technical challenge by checking whether the migration of a
function to a new region based on the latest DP is required.
If a re-deployment is warranted, the migrator replays steps
(2) and (3) outlined in Initial Deployment, where in step
(2), the migrator uses crane [72], a lightweight library for
image migration between arbitrary container registries, to
copy the image from the home region to a new region. This
low-overhead solution is to not have to rebuild function im-
ages. A new DP is considered active once all functions are
redeployed by updating the corresponding value in the dis-
tributed key-value store. If any function re-deployment fails,
the framework defaults to the home region deployment, such
that the framework does not route any invocation through
an invalid deployment. This process catches potential issues
with deployment, including region unavailability due to in-
creased traffic. The Migrator periodically retries the rollout
of any non-activated DP until it is replaced by a new one.

6.2 Flexible, cross-regional workflow execution
Caribou must be able to handle and enforce cross-regional
workflow execution and traffic routing. No new DP should

necessitate changing the source code. Additionally, the chal-
lenge of control flow invocations and synchronization nodes
needs to be solved to enable a well-rounded framework. The
execution and traffic routing interface must be noninvasive
to the developer’s source code, and thus, all the complexity
of cross-regional execution is hidden away as part of the
function wrapper provided by the caribou Python package.

Invoking a workflow. The rightmost section of Fig. 5 out-
lines the process of workflow invocation. End-user workflow
invocations can occur either by sending requests directly to
the entry function in the home region, which is then auto-
matically re-routed if required, or through a proxy provided
by caribou’s CLI utility. In any case, the wrapper routes 10%
of the workflow invocations to be fully executed at the home
region for performance benchmarking and metric collection.
On a workflow invocation, the initial node or the CLI utility
fetches the current DP from the distributed key-value store,
as indicated in the figure’s blue arrows.

Traffic Routing. The DP determines the current workflow
traffic routing by providing the current mapping𝜓 : 𝑁 ↦→ 𝑅.
Each node can determine the deployment information of
all successors by knowing𝜓 , the DAG structure, and its lo-
cation in the DAG. Determining the current DAG location
during an invocation is not trivial. The information should
be passed on from the predecessor, starting from the known
starting point of the initial node; any subsequent node loca-
tion is determined inductively. When invoking a successor,
the decorator provided in the wrapper copies the DP and
notes the location of the successor, piggybacking it on the
invocation’s intermediate data sent to the successor. The
successor handler decorator retrieves the DP, and the data is
passed to the defined function, ensuring it receives the data
as forwarded by its predecessor.

Pub/sub for invocations. The wrapper invokes function
calls by posting a message to the respective function’s pub-
lisher/subscriber (pub/sub) messaging topic. By posting the
message to the correct region and topic that is part of the
deployment information retrieved from the DP, the wrapper
routes the invocation to the correct successor deployment
without requiring any code changes. Similar to a recent re-
lated work [86], we use pub/sub as a geospatial offloading
glue due to its availability at all major cloud service providers
(e.g., AWS SNS, Azure Service Bus, and Google Pub/Sub) and
its ability to support many programming languages, allow-
ing for future portability. Furthermore, they provide a level
of reliability by requiring subscriber acknowledgment. If no
acknowledgment is received, the pub/sub service automati-
cally retries to deliver the messages. Lastly, pub/sub services
seamlessly integrate with serverless functions as invocation
triggers, ensuring dependable message delivery. The red ar-
rows in Fig. 5 illustrate this process of message posting and
successor invocation.

7 Metrics
7.1 Workflow Metrics and Models
Tomake policy decisions,Caribou requires end-to-endwork-
flow latency, cost, and carbon metrics. The Metric Manager
(MM) component retrieves/models per-node/-edge DAGmet-
rics and combines them to form workflow-level metrics.
Latency. Transmission latency between regions is captured
as a latency distribution for various input sizes, derived from
historical data. In the absence of historical data, the MM
defaults to using CloudPing [70] to estimate transmission
latency. Similarly, the execution time of a workflow stage
in a given region is captured as a distribution (as opposed
to average) from historical data. When such information is
unavailable for a new region, MM defaults to using the home
region’s execution time distribution. This distribution exists
for any nodes with a non-trivial invocation probability.
Cost. The MM calculates the execution cost based on exe-
cution time (𝑡) in seconds, configured memory size (𝑚𝑒𝑚)
in megabytes, a fixed per-invocation fee [9], along with ad-
ditional DynamoDB accesses introduced by Caribou for
geospatial shifting [6]. Moreover, the transmission cost is cal-
culated from the associated outbound data transfer (egress) [7]
as well as the costs of SNS messaging used by our frame-
work for function orchestration [8]. We do not consider the
implications of the free tier provided by AWS.
Carbon. Carbon footprint has operational and embodied
components. The MM only models the operational carbon.
Considering embodied carbon is essential for carbon account-
ing [59], but including it in scheduling decisions is not always
accurate. In our setting, as long as capacity is available to
host a function execution, embodied carbon for both the
current and future host nodes will be incurred regardless
of Caribou’s offloading decision. In economic terms, this
is referred to as sunk cost. And if there is no capacity to
offload, there won’t be any offloading. Furthermore, without
extensive publicly available data (including for building con-
struction, land, etc.) to reliably model the embodied carbon
for each region, the most meaningful approach would be to
associate the same embedded carbon per unit of resource
to all regions. Adding the resulting equal embodied carbon
baseline to all regions does not affect their relative carbon
differential, the element leveraged by Caribou.

The operational carbon footprint of execution (𝐶𝑎𝑟𝑏𝑜𝑛𝑒𝑥)
can be estimated by the power consumed adjusted by power
usage effectiveness (PUE) and the carbon intensity of grid
(𝐼grid) [34, 56, 98, 114]. 𝐼grid can either be the average carbon
intensity (ACI) or marginal carbon intensity (MCI). Prior
work has used both ACI [46, 96, 103] and MCI [26, 67] for
scheduling-related tasks and analysis. There is growing in-
terest in using MCI for carbon-aware optimization, but it can
lead to different decisions [94], highlighting the importance
of continued research. We opted to use ACI due to the high
uncertainty of the MCI signals [103] and the difficulty of

verifying MCI as opposed to ACI, which can be measured
from electricity production data [37].

During the execution, CPU and memory are the predomi-
nant carbon contributors, asmodeled in previous research [56,
93]. The contribution of other components is shown to be
relatively negligible [56]. We use a PUE of 1.11, the average
of the 1.07-1.15 range reported for AWS datacenters [5].

𝐶𝑎𝑟𝑏𝑜𝑛𝑒𝑥 = 𝐼grid ×
(
𝐸𝑝𝑟𝑜𝑐 + 𝐸𝑚𝑒𝑚

)
× 𝑃𝑈𝐸 (7.1)

We use the 3.725e-4 kW/GB, estimated and used by the
community [53, 56], as a basis for energy usage associated
with the serverless function’s memory usage (𝑃𝑚𝑒𝑚):

𝐸𝑚𝑒𝑚 = 𝑃𝑚𝑒𝑚 × (𝑚𝑒𝑚/1024) × 𝑡/3600 (7.2)
The number of vCPUs of anAWSLambda function is based

on its memory size (𝑛𝑣𝑐𝑝𝑢 =𝑚𝑒𝑚/1, 769) [11]. Caribou uses
AWS Lambda Insights [13] to collect cpu_total_time, needed
to calculate average vCPU utilization [27, 102]. The power
consumption per vCPU (𝑃𝑣𝑐𝑝𝑢) is then derived using a linear
utilization-based power model [35, 39]. A prior study [98]
estimated that the average power draw per core in AWS dat-
acenters is 7.5e-4 kW when idle (𝑃𝑚𝑖𝑛) and 3.5e-3 kW when
fully utilized (𝑃𝑚𝑎𝑥).

𝑃𝑣𝑐𝑝𝑢 = 𝑃𝑚𝑖𝑛 +
cpu_total_time

𝑡 × 𝑛𝑣𝑐𝑝𝑢
× (𝑃𝑚𝑎𝑥 − 𝑃𝑚𝑖𝑛) (7.3)

𝐸𝑝𝑟𝑜𝑐 = 𝑃𝑣𝑐𝑝𝑢 × 𝑛𝑣𝑐𝑝𝑢 × 𝑡/3600 (7.4)

The operational carbon footprint of data transmission
𝐶𝑎𝑟𝑏𝑜𝑛tran can be estimated by the size of data moved (𝑆),
the energy consumption of the data transfer (𝐸𝐹𝑡𝑟𝑎𝑛𝑠), and
the average carbon intensity of the route between source
and destination 𝐼route. This methodology was used in prior
network energy characterization studies [15, 30, 40], and
it is a simplified version of a state-of-the-art methodology
proposed by Tabaeiaghdaei et al. [97]. We refer the reader to
the Caribou’s repository for further implementation details.

𝐶𝑎𝑟𝑏𝑜𝑛tran = 𝐼route × 𝐸𝐹𝑡𝑟𝑎𝑛𝑠 × 𝑆 (7.5)
Estimates of 𝐸𝐹𝑡𝑟𝑎𝑛𝑠 vary greatly across studies [15, 20, 40,
68, 69, 79, 88, 104]. As the energy efficiency of data transfer
doubles approximately every two years [15, 20], we extrapo-
late 𝐸𝐹𝑡𝑟𝑎𝑛𝑠 based on these studies to be in the range of 0.001
to 0.005 kWh/GB. To account for this uncertainty due to
limitations of today’s network energy models, we included
a best-case scenario for offloading (0.001 kWh/GB for any
transmission) and aworst-case scenario (0.005 kWh/GB inter-
and 0 kWh/GB intra-region transmission). Future more accu-
rate models will most likely not be out of this range for the
next few years. Caribou’s Metrics Manager can seamlessly
integrate alternative models, as demonstrated by a sensitivity
study of different transmission energy factors (§9.3).

End-To-End Metric Estimation Estimating the end-to-
end latency, cost, and carbon emissions of complex condi-
tional application DAGs is a challenging task [21] warranting
more research, especially when dealing with highly variable

serverless traffic [89]. Prior work [36, 58] has used Monte
Carlo simulations [71] as an effective strategy to tame this
complexity. To support conditional DAGs (§4), the original
DAG’s edge invocation probabilities are sampled to deter-
mine if edges are taken in each simulation. By sampling each
function’s historical execution time and each edge’s trans-
mission latency distributions, the critical path of the partial
DAG—and consequently, the end-to-end execution time—is
determined. Cost and carbon emissions are also calculated
for each simulated scenario. The Monte Carlo simulations
are conducted in batches of 200, continuing until reaching a
low coefficient of variation below 0.05 for the distributions
of end-to-end latency, cost, and carbon footprint or until a
maximum of 2,000 samples. For these distributions, the mean
represents the "average case" used for DP ordering, and the
95th percentile is the "tail case" used to determine tolerance
violations for satisfying the QoS.

7.2 Metric Acquisition and Forecasting
The metrics are based on various sources, requiring different
methods of acquisition, processing, and possibly forecasting.
Additionally, different metric sources may demand varying
acquisition periods (e.g., cloud prices do not change as fre-
quently as carbon intensity). While workflow metrics are
collected upon request by the DM, carbon and cost data can
be collected periodically.

Learning from Past Invocations. Logs from all function
executions are collected, aggregated, and managed by the
MM. The MM maintains a list of the daily invocations of
every workflow in a distributed storage for the last thirty
days and, at most, for the 5,000 latest workflow executions.
If more than 5,000 invocations are currently stored, it starts
selectively forgetting the oldest invocations: only invoca-
tions representing DAG information (e.g., region-to-region
latency) not present in new data are maintained, and others
are removed in a FIFO manner. This ensures the framework
adapts to dynamic workloads without losing data, even if
certain DAG information is no longer pursued. MM also
gathers metrics from AWS Lambda Insights to calculate each
function’s average vCPU utilization and total network traffic.

External Data Sources. The MM also gathers and aggre-
gates data from other external sources, including carbon
intensity from Electricity Maps [38], AWS Price List [14] for
latest prices, and CloudPing [70] for fresh inter-region la-
tency estimation.

From Learning to Forecasting. Another responsibility of
the MM is to perform forecasting with acquired data. Cur-
rently, the manager performs this process for forecasting
carbon intensities, that are later used by the data model-
ing process. Carbon forecasting is needed as the diurnal
patterns exhibited by several regions mean that the best
deployment for carbon objectives might shift throughout

1 from caribou import Workflow

2 workflow = Workflow(name="example", version="0.1")

3 @workflow.serverless_function(

4 name = "Example_Function",

5 regions_and_providers = {"allowed_regions": [{"

region":"region_1"}]}

6)

7 def example_function(event):

8 results = workflow.get_predecessor_data ()

9 workflow.invoke_serverless_function(

next_function , intermediate_data , conditional)

Listing 1. Example demonstrating our Python API. The API
consists of one class and three functions.

the day; however, solving the ideal DP for every workflow
DAG at every hour might be infeasible as the overhead in-
curred can outweigh the gains. In that case, to ensure that
infrequently solved deployments may still benefit from the
Caribou framework, carbon forecasting is used for reason-
able future data prediction. MM accomplishes this by using
Holt-Winters Forecasting Exponential Smoothing [52] once
every day using the hourly carbon intensities of the previous
week as input.

8 Developer Interface
Developers interact with the framework in two ways: 1) the
API provided by the caribou Python package, and 2) the
deployment manifest, where they can provide further deploy-
ment details. Caribou currently supports Python, a leading
language in serverless [33, 51].

API: To declare a workflow, developers use the lightweight
API provided by the caribou Python package (Listing 1). In
a main file named app.py, the workflow is instantiated (line
2) to provide helper methods to define the DAG. The func-
tion handler to be invoked on requests is registered using
a decorator (lines 3-6). The developer can specify function-
level configurations, such as region constraints (allow/disal-
low), to enforce function-level data compliance (line 5). The
function parameter (event), holds the value passed in the
invocation.
A call to invoke_serverless_function (line 9) corre-

sponds to a DAG edge. When calling, the handler of the other
function and intermediate data is passed as an argument. The
developer can optionally pass a Boolean variable to indicate
a conditional invocation. This variable is dynamically eval-
uated when the function is executed, and the condition’s
outcome is stored in the distributed annotation table if the
successor is a synchronization node.
The developer can indicate a synchronization node in

the source code by calling get_predecessor_data (line 8).
Upon execution, this API call will retrieve intermediate data
from the predecessors in the distributed table.

Deployment Manifest: In addition to declaring the work-
flows implicitly within the code and providing function-level
configurations, developers must also configure their work-
flows in the iam_policy.json and config.yml file. The
iam_policy.json file specifies identity and access manage-
ment (IAM) permissions. These policies are associated with
every role linked to the deployed serverless workflow (one
per function deployment region).
The config.yml allows developers to define workflow-

level objectives and tolerances. The developer specifies the
"home region"—the initial deployment region of the work-
flow. Additionally, the developer can define the tolerances on
end-to-end latency, carbon emission, and cost per invocation
in this file. These are enforced at DP generation.
Lastly, to enforce regulatory compliance on a workflow

level, developers can specify regions or providers eligible
or prohibited for deployment, where function-level config-
urations supersede workflow-level ones. If no regions are
explicitly allowed, the framework defaults to considering all
potential regions.

9 Evaluation
9.1 Methodology
We evaluate Caribou end-to-end to demonstrate realistic
results in real settings and highlight its capabilities and limi-
tations. The carbon data period is from the 15th to the 21st
of October 2023. Due to space limits, we limit the evalua-
tion to the North American regions us-east-1, us-west-1,
us-west-2, and ca-central-1.

Benchmark workflows: We use five workflows that exem-
plify serverless workflows from simple one-step functions
to complex applications to evaluate Caribou:
1. DNA Visualization [28]: a simple single-step workflow

that, given a DNA sequence file, generates the correspond-
ing visualization.

2. RAGData Ingestion [100]: a two-stage pipeline that, given
an input PDF document, extracts document metadata and
then generates bedrock embeddings for use as a part of a
“Document Chat” LLM application.

3. Image Processing [54]: a fan-out application that, given
an image and a list of transformations, performs those
transformations in parallel.

4. Text2Speech Censoring [36]: similar to the example intro-
duced in §2.4, but with a simplified validation stage.

5. Video Analytics [101]: an application that recognizes ob-
jects in video frames by splitting the video into chunks,
processing them in parallel, and then joining the results.
We evaluated this benchmark using input data from INO’s
Video Analytics Dataset [48].

Table 1 highlights the differences in DAG structures of these
workflows, whether they have synchronization nodes and/or
conditional branches (§4), and tested input sizes. We use

Benchmark DAG Structure Sync Cond Inputs

DNA Visualization ✗ ✗ 69KB / 1.1MB

RAG Data Ingestion ✗ ✗ 33 / 115 Pages

Image Processing ✗ ✓ 222KB / 2.4MB

Text2Speech Censoring ✓ ✗ 1 KB / 12 KB

Video Analytics ✓ ✓ 206KB / 2.4MB

Table 1.We used benchmark workflows with different struc-
tures, features, and input sizes to evaluate Caribou. Bench-
mark code and input data are publicly available in the Cari-
bou GitHub repository.

small and large input sizes to show the sensitivity of our
results to input variability. In practice, input sizes may vary
greatly and undergo distribution shifts. Caribou captures
these shifts by learning from the most recent invocations
and adapts the deployment plan if necessary.

Workload Invocation and Traffic:We use a uniform invo-
cation pattern to evaluate trade-offs and high-level aspects.
Continuous evaluations (§9.5, §9.7) used the 2021 Azure Func-
tions invocation trace [17, 110].

Fair and Controlled Experiments: In all evaluations, we
report the relative carbon emissions for comparative argu-
ments about deployments to specific regions. Additionally,
we take the following steps to ensure a fair evaluation:

(1) All benchmarks access external storage and services at
or close to their home region. Fixing these external data and
services is important because, in the real world, some applica-
tions may need to access fixed data or services that cannot be
migrated. Migrating these applications can significantly im-
pact performance, cost, and carbon, especially when data is
not migrated; (2) All experiments evaluate the service time of
the application from the moment the request is first received
by the first function to the end time of the last function(s)
of a workflow. This is to ensure a consistent comparison of
workflow performance among alternative deployment plans
(§9.4) and orchestration approaches (§9.6); (3) We choose
random subsamples of inputs from input sources (in indi-
cated size). While Caribou is able to handle more complex as
well as changing workload patterns, we use this approach to
simplify the plots while highlighting the input’s impact; (4)
All experiments show both the best- and worst-case model
regarding transmission carbon (§7.1);

9.2 Insights on Effectiveness of Geospatial Shifting
Fig. 7 shows the carbon savings compared with running
everything in us-east-1 using manual static deployment
and Caribou with different sets of regions. Our insights are:

I1: Static deployment to regions with lower carbon in-
tensity does not necessarily reduce a workflow’s carbon

DNA Visualization RAG Data Ingestion Image Processing Text2Speech Censoring Video Analytics
0.0

0.5

1.0

1.5

2.0

Ca
rb

on
 N

or
m

al
ize

d
to

 u
s-

ea
st

-1

small large small large small large small large small large

Worst-Case Scenario
Best-Case Scenario

Coarse (us-east-1) Coarse (us-west-1)
Coarse (us-west-2)

Fine (us-east-1 and us-west-1)
Fine (us-east-1 and us-west-2)

Fine (us-east-1, us-west-1 and us-west-2)
Coarse (ca-central-1)

Fine (us-east-1 and ca-central-1)
Fine (All Available Regions)

Figure 7. Normalized relative carbon to deploying the workflow in us-east-1 with the two sets of input sizes (small and
large) and the two data transmission carbon scenarios (translucent being energy factor 0.005 kWh/GB, no within region carbon
and fully colored being 0.001 kWh/GB and same within region).

emissions. us-west-1 and ca-central-1 have 6.1% and
91.5% lower average carbon intensity than us-east-1 in the
experiment period (us-west-2 has comparable average in-
tensity). Coarse grained, single-region deployment of work-
flows can worsen carbon emissions depending on the input
size and the transmission carbon scenario. Additionally, any
static deployment misses out on leveraging cross-regional
carbon intensity variations (§2.1).

I2: An adaptive framework is needed to control geo-
shifting across workflows, or even for different inputs
of the same workflow. Caribou tames the spikes in excess
carbon emissions through not offloading data transmission
heavy applications such as Image Processing in the worst-
case, where a non-adaptive framework can cause significant
overhead. This shows that adaptiveness is also needed based
on applications’ input size. For example, RAG Data Inges-
tion under the worst-case model, given a small input, could
benefit from being singularly offloaded to ca-central-1;
however, for the large input, that strategy generates more
carbon than simply staying in the home region.

I3: Benefits of geospatial shifting depend on the mix
of available regions. This is due to the different and vary-
ing carbon intensity patterns in different regions (§2.1). If
we zoom into the three two-region combinations for the
Text2Speech Censoring benchmark, we observe that depend-
ing on the combination, the reductions vary but are all more
than any individual involved region. If we extend the two-
region combinations with a third, low carbon region such
as ca-central-1, we see additional gains. This offloading
would not have happened with compliance constraints.

I4: The effectiveness of geospatial shifting depends on
the application’s compute-to-transmission ratio. When
geospatially shifting, the effectiveness depends on input size
and workflow makeup. Transmission-heavy workflows ben-
efit less from geospatial shifting than compute-heavy ones;
migrating more data can offset carbon savings from regions

0.1 1.0 10.0
Execution Carbon / Transmission Carbon

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
Ca

rb
on

 to
 u

s-
ea

st
-1

Image Processing
Text2Speech C'
RAG Data Ingestion
Video Analytics
DNA Visualization

Best-Case Worst-Case Small (Unfilled) Large (Filled)

Figure 8. Geospatial shifting offers more carbon savings
with increased Execution / Transmission ratio.

with cleaner power grids. Fig. 8 additionally showcases this
relationship, where we compare the normalized carbon over
the execution to transmission ratio. We calculate the ratio
using our modeled energy usage data based on collected
workflow execution data.

I5: Holistic geospatial shifting offers substantial gains.
Caribou considers novel angles to determine carbon-optimal
deployments (§5.1). Achieving a carbon reduction of an av-
erage (geometric mean) of 22.9% to 66.6%, respectively, for
the worst-case and best-case transmission carbon scenarios
(Fig. 7), Caribou demonstrates the significant potential of
carbon-aware geospatial shifting approaches. More research
is needed to unlock even more savings for serverless work-
flows and, more importantly, pave the way for extending
techniques presented in this work to new workloads.

9.3 Transmission Energy Intensity to Carbon Saving
Fig. 9 shows the average (geometric mean) results for the
five studied workflows given different transmission energy
factors and demonstrates the adaptability of the framework
to changing carbon accounting and modeling approaches.
We evaluated the scenario where the transmission factor is

10−5 10−4 10−3 10−2 10−1
0.0

0.2

0.4

0.6

0.8

1.0

Ca
rb

on
 N

or
m

al
ize

d
to

 u
s-

ea
st

-1

(0.001)
Case
Best

Equal Intra/Inter Tx Factor
Input Size

small
large

10−5 10−4 10−3 10−2 10−1

(0.005)
Case
Worst

Free Intra Tx Factor
Input Size

small
large

Transmission Energy Factor (kWh/GB)

Figure 9. Geometric mean of normalized operational car-
bon for different transmission energy factors when using
Caribou for us-east-1, us-west-1, us-west-2, and ca-
central-1 regions.

equal between all regions (left sub-figure, Scenario 1) and
where intra-region data transmission between the same re-
gion is free (right sub-figure, Scenario 2). The red vertical line
shows the best- and worst-case scenarios for shifting (cap-
tion of Fig. 7) in the left and right sub-figures, respectively.
This study shows that geospatial offloading, while already
achieving significant carbon savings, especially in Scenario
1, will become increasingly more beneficial as the energy
consumption of data transfer continues to decrease [15, 20],
the benefit of this increase in energy efficiency is more evi-
dent in Scenario 2, where the normalized carbon decreases
significantly as the transmission energy factor approaches
10e-4 kWh/GB. As transmission energy factor approaches
zero, geospatial shifting frameworks such as Caribou can
offer carbon reduction of 91.2% (geometric mean), nearly
fully leveraging the difference in carbon intensities between
power grids (Fig. 2), hindered by differences in application
execution time between regions.

9.4 Carbon Efficiency and Latency Tolerance
Incorporating tolerances on DP generation, such as workflow
end-to-end latency (outlined in §8) on the generated DPs,
enables developers to meet Quality of Service (QoS) require-
ments while still benefiting from carbon reductions. Fig. 10
illustrates how varying workflow runtime tolerances lead
to different deployments with different normalized carbon
emissions by evaluating the ratio of the 95-percentile tail ser-
vice time of deployment over QoS, defined as 95-percentile
tail service time of a single region deployment in us-east-1
augmented by runtime tolerance. This ratio, shown in the fig-
ure as Relative Time, can be used to visualize if a workflow
meets or violates QoS constraints (higher than 1.0 signifies
violation). We examine this effect on the DNA Visualiza-
tion, where we see that as the latency tolerance of workflow
execution increases (from 0% to 10% over the deployment
in the home region us-east-1), the freedom of the frame-
work to offload parts or the whole application to regions
with lower carbon intensity also increases. The framework

0.0
0.2
0.4
0.6
0.8
1.0

Ca
rb

on
 N

or
m

al
ize

d
to

 u
s-

ea
st

-1
Sm

al
l I

np
ut

s

DNA Visualization

0.0
0.2
0.4
0.6
0.8
1.0

Image Processing

0.0 2.5 5.0 7.5 10.0
0.0
0.2
0.4
0.6
0.8
1.0

La
rg

e
In

pu
ts

0.0 2.5 5.0 7.5 10.0
Runtime Tolerance (%)

0.0
0.2
0.4
0.6
0.8
1.0

0.8

0.9

1.0

1.1

1.2QoS Violated

QoS Met

0.8

0.9

1.0

1.1

1.2

QoS Violated
QoS Met

0.8

0.9

1.0

1.1

1.2

QoS Violated
QoS Met

0.8

0.9

1.0

1.1

1.2

Ta
il

(p
95

) S
er

vi
ce

 T
im

e
/ Q

oS

QoS Violated
QoS Met

Worst-Case: Relative Carbon
Worst-Case: Relative Time

Best-Case: Relative Carbon
Best-Case: Relative Time

Figure 10. Carbon emissions under different latency toler-
ances when using Caribou to determine optimal DPs for
us-east-1, us-west-1, us-west-2, and ca-central-1.

generally observes the QoS tolerances while reducing the
relative carbon emissions of the workflow. The decisions
Caribou makes reflect a conservative end-to-end latency
modeling, where for low tolerances, the algorithm generally
does not offload, especially since DNA Visualization as a one
function application does not offer any offloading of stages
off the critical path. Very short-running workflows such as
Image Processing are more sensitive to the data transmis-
sion scenario (Fig. 12), where the algorithm progressively
offloads more and more fan-out nodes as runtime tolerances
increase (starting from shorter running nodes to longer run-
ning nodes) to adhere to QoS requirements. Additionally,
the algorithm generally decides to remain in the home re-
gion and thus does not cause any runtime overhead in the
worst-case scenario.

9.5 Efficiency of Self-Adaptive Re-Deployment
Fig. 11 captures the week-long operation and visualizes the
decisions made by the deployment solver over time. New DP
generation points are marked with vertical lines. Initially,
the framework enters a learning phase, optimizing deploy-
ment regions daily and subsequently transitioning to a lower
frequency schedule. Due to a stable input distribution, Cari-
bou’s DP converges to a relatively stable number of DPs
where all three DP generations generate similar 24-hour
DPs. However, the frequency of metric collection remains
unchanged, given that carbon data and workloads may not
always remain stable, and drastic changes may result in pre-
viously optimal DP’s being suboptimal or, in a more extreme
case, more carbon-intense. Generally, Caribou generates
DPs that offload the workflow to the lowest-carbon region
for that time. This is true both under the best-case scenario

0.75

1.00

1.25

1.50

1.75

DP Generation Worst-Case Scenario

Deployment Decision by Caribou During Time Period

2023-10-15 2023-10-16 2023-10-17 2023-10-18 2023-10-19 2023-10-20
06 12 18 06 12 18 06 12 18 06 12 18 06 12 18 06 12 18

0.6

0.8

1.0

1.2

Ca
rb

on
 N

or
m

al
ize

d
to

 u
s-

ea
st

-1

Best-Case Scenario

us-east-1 (Coarse-Grained)
us-west-1 (Coarse-Grained)

us-west-2 (Coarse-Grained)
Caribou (Fine-Grained)

Figure 11. Showcasing Caribou’s DP decisions for
Text2Speech Censoring using the large input size. The top
line of each plot shows our framework’s decisions, highlight-
ing where most workflow nodes are deployed.

0
10
20

+38.7%
-7.7% +2.4%

-2.4% +0.2%
X

+1.1%
-1.0% +3.0%

X

Small Inputs

Image Processing
DNA Visualization

Text2Speech C'
RAG Data Ingestion

Video Analytics0

50

100

+6.5%
+0.7% -0.7%

+1.8%
+0.3%

X
+0.8%

+0.1%
+4.1%
X

Large Inputs

W
or

kf
lo

w
Ex

ec
ut

io
n

Ti
m

e
(s

)

AWS Step Functions SNS Caribou

Figure 12. Comparison of workflow execution time between
AWS Step Functions, Amazon SNS, and Caribou. SNS is
included as the function-to-function messaging channel in
Caribou, but by itself does not support synchronization.

where all three regions are viable offloading options, and
under the worst-case scenario where, due to the high trans-
mission carbon overhead of the large input, keeping the ma-
jority of the nodes of the workflow in us-east-1 presents
the sole feasible solution. In the worst-case scenario, the fine-
grained orchestration nature of Caribou allows some less
transmission intensive nodes to be offloaded to regions with
a lower carbon intensity, as observed on October 15 between
2 pm-11 pm. Nonetheless, we observe a notable limitation in
carbon emission forecasting on October 17, 6 am-12 pm in
the best-case scenario, attributed to a carry-over from the
previous day’s inaccurate prediction.

1 2 3 4 5 6 70.0
0.2
0.4
0.6
0.8
1.0

Ca
rb

on
 N

or
m

al
ize

d
to

 u
s-

ea
st

-1

1 2 3 4 5 6 7

5
10
15
20
25

M
AP

E

us-east-1

us-west-1

us-west-2

ca-central-1

Frequency of Deployment Solve per Week

Best-Case Worst-Case Execution Caribou

Figure 13. (a) Increasing total carbon per invocation and (b)
improved carbon forecasting with more frequent updates.

9.6 Performance Overhead Characterization
We compare the performance overhead of Caribou with
AWS Step Functions and basic orchestration via SNS to in-
voke subsequent functions. We compare to AWS Step Func-
tions, as it is a first-party service explicitly designed to pro-
vide serverless orchestration. We additionally compare to
SNS as Caribou uses it, allowing us to assess the additional
overhead imposed by our framework. Fig. 12 shows that per-
forming function orchestration on AWS Step Functions re-
sults in the lowest workflow execution time, arising from the
faster transition between application stages, likely due to the
proprietary optimization techniques employed by AWS Step
Functions. AWS Step Function is, on average, 12.8% and 2.17%
(geometric mean) faster for small and large input sizes, re-
spectively, than similar implementations in SNS. Caribou’s
function orchestration introduces less than 1% (geometric
mean) overhead for small and large input sizes over simi-
lar implementations in SNS. When compared to AWS Step
Function, Caribou incurs 5.72% and 2.71% (geometric mean)
additional workflow execution time for small and large input
sizes, respectively. Notably, the latency overhead of Caribou
decreases with increasing application execution duration, as
seen from the drop of relative overhead for large input sizes
over smaller ones. Conversely, the overhead increases with
increasing DAG complexity, as exemplified by contrasting
the negligible overhead of a one-stage application of DNA
Visualization to the complex application with fan outs and
synchronization branches exemplified by Video Analytics.

9.7 Adaptive Learning and Solving Period
We disable the dynamic triggering policy (§5.2) and evaluate
the sensitivity of the carbon overhead to different policy de-
termination frequencies. We use the Text2Speech Censoring
benchmark with a small input, where the deployment solver
runs for a total of ∼534s for 24-hour granularity (24 solves)
DP generation and incurs ∼1.98e-2 gCO2eq when executed
in ca-central-1, with a break-even point of 91 invocations
in the worst-case scenario. We sweep the DP generation fre-
quency in a week: from once to seven times. For this study,
the number of invocations affects the framework cost per
invocation. We chose the 5th percentile DAG reported from

Framework Objectives Deployment
Granularity

Dynamic Workflow
Migration

Geo-
spatial

Multi-
Stage

Control
Flow Sync Nodes Transmission

Overhead Supported Providers

AWS Step Functions [10] ✗ Coarse ✗ ✗ ✓ ✓ ✓ ✗ AWS
GCP Workflows [44] ✗ Coarse ✗ ✗ ✓ ✓ ✓ ✗ Google
Azure Logic Apps [18] ✗ Coarse ✗ ✗ ✓ ✓ ✓ ✗ Azure

Serverless Multicloud [112] Latency Cost Fine ✗ ✗ ✓ ✗ ✗ ✗ AWS, Google, Alibaba
BPMN4FO [109] ✗ Coarse ✗ ✗ ✗ ✓ ✗ ✗ AWS, Azure, IBM

xAFCL [84] Latency Cost Fine ✗ ✓ ✓ ✓ ✗ ✗
AWS, Azure, IBM, Google,

Alibaba
OpenTOSCA [105] ✗ Coarse ✗ ✗ ✓ ✓ ✓ ✗ AWS, Azure, IBM, Google,...

Carbon Aware GSLB [67] Carbon ¨ Coarse ✗ ✓ ✗ ✗ ✗ ✗ Azure
GreenCourier [26] Carbon ¨ Coarse ✗ ✓ ✗ ✗ ✗ ✗ Google

Caribou Carbon ¨
Latency Cost Fine ✓ ✓ ✓ ✓ ✓ ✓ AWS

Table 2. Taxonomy of different capabilities of frameworks for serverless cloud workflow deployment.

Azure characterizations [65], with ∼1.6K average daily invo-
cations. For DAGs with a different number of invocations,
the framework overhead would be amortized proportionally.
Fig. 13(a) shows that more frequent deployment updates do
not incur any significant framework overhead relative to
carbon savings but also do not significantly decrease the car-
bon emissions from running the workflow. Fig. 13(b) shows
forecast quality does not worsen linearly with increasing
forecast window (leftward X-axis). To reduce forecasting
overhead, we re-implemented the Monte Carlo simulation
in Go, doubling performance compared to Python while
maintaining forecast accuracy. In the case of Text2Speech
Censoring, it drops the DP generation time to only ∼276s
for 24-hour granularity (24 solves).

10 Limitations
Based on our discussions with power and sustainable com-
puting experts, we are aware of one limitation of our pro-
posed geospatial shifting vision. Our work assumes that the
carbon intensity of electrical grids is independent of work-
load shifting. This assumption only holds if the power con-
sumption of the shifted workload is small enough compared
to the scale of the energy provider. While this dynamic can
(and should) be modeled, unfortunately, there is currently no
way to associate the marginal carbon intensity of grids with
a specific consumer. This remains an open research question
for energy and computing experts.

11 Related Work
The background in this space was extensively discussed
in §2.2. Table 2 compares Caribou with other frameworks
for serverless workflow deployment. These frameworks can
be broadly categorized into provider-specific solutions for
workflow deployment [10, 18, 44], offering a rich toolset
for complex applications with additional concepts such as
fan-outs. An additional cluster of frameworks concerns them-
selves with deployment and provisioning of workflow chore-
ographies [84, 109] and topologies [105], offering rich en-
vironments for modeling of cloud workflows. Many have
also specifically extended their frameworks to deploy server-
less workflows in multi-cloud settings [112], but are more

in a proof-of-concept stage of development. Distributing
workloads geospatially is an active research area, particu-
larly in ML training [83, 92, 108]. However, the challenge
of allocating resources dynamically based on collected data
differs significantly from allocating them for one-time use.
Moreover, existing solutions are neither comprehensive nor
specific enough to support the deployment of arbitrary, com-
plex serverless computation graphs and do not account for
the transmission overhead of workflows. Lastly, a host of
recent works consider carbon for geospatial workflow de-
ployment [26, 67] or across different generations of hard-
ware [50]. They are not fine-grained, focus on offloading the
execution of singular serverless functions geospatially, do
not consider transmission carbon, and do not support DAGs.

12 Conclusion
Caribou is a framework to reduce the operational carbon
emissions of serverless workflows through geospatial shift-
ing. It is the first framework to holistically consider the car-
bon effect of data transmission, latency and cost implications
of migration, and overhead of the control logic. Our findings
reveal the untapped potential of geospatial shifting in re-
ducing emissions for seemingly complex workflows. Future
research is needed to enhance the accuracy of data transfer
emission models, better understand the limits of geospatial
shifting, and expand the benefits to broader workloads.

Acknowledgments
We thank Ana Klimovic, Margo Seltzer, Changyuan Lin, No-
man Bashir, Arshia Moghimi, Nima Nasiri, Foteini Strati,
Juntong Luo, and Mohammadamin Baqershahi for their feed-
back on this work. We also thank the anonymous reviewers,
and specially our shepherd, Philip Levis, for helping us im-
prove the paper. This work was supported in part by the Nat-
ural Sciences and Engineering Research Council of Canada
(NSERC), the Mitacs Globalink Research Award program, the
Swiss-European Mobility Program (SEMP), the Zeno Karl
Schindler Foundation, and the Institute for Computing, In-
formation and Cognitive Systems (ICICS) at UBC. This work
was enabled by cloud resources from the Digital Research
Alliance of Canada (RAS and RAC allocations).

References
[1] ACM Technology Council. 2021. Computing and Climate Change.

https://dl.acm.org/doi/pdf/10.1145/3483410. Accessed: 2024-04-17.
[2] Bilge Acun, Benjamin Lee, Fiodar Kazhamiaka, Aditya Sundarrajan,

Kiwan Maeng, Manoj Chakkaravarthy, David Brooks, and Carole-
Jean Wu. 2023. Carbon dependencies in datacenter design and man-
agement. ACM SIGENERGY Energy Informatics Review 3, 3 (2023),
21–26.

[3] Iftikhar Ahmad, Muhammad Imran Khan Khalil, and Syed Adeel Ali
Shah. 2020. Optimization-based workload distribution in geograph-
ically distributed data centers: A survey. International Journal of
Communication Systems 33, 12 (2020), e4453.

[4] Sherif Akoush, Ripduman Sohan, Andrew Rice, Andrew W Moore,
and Andy Hopper. 2011. Free lunch: Exploiting renewable energy
for computing. In 13th Workshop on Hot Topics in Operating Systems
(HotOS XIII).

[5] AmazonWeb Services. 2020. Four trends driving global utility digitiza-
tion. https://aws.amazon.com/blogs/industries/four-trends-driving-
global-utility-digitization/. Accessed: 2024-04-17.

[6] Amazon Web Services. 2024. Amazon DynamoDB Pricing. https:
//aws.amazon.com/dynamodb/pricing/. Accessed: 2024-05-07.

[7] Amazon Web Services. 2024. Amazon EC2 On-Demand Pricing.
https://aws.amazon.com/ec2/pricing/on-demand/. Accessed: 2024-
04-17.

[8] Amazon Web Services. 2024. Amazon SNS Pricing. https://aws.
amazon.com/sns/pricing/. Accessed: 2024-05-07.

[9] Amazon Web Services. 2024. AWS Lambda Pricing. https://aws.
amazon.com/lambda/pricing/. Accessed: 2024-04-17.

[10] Amazon Web Services. 2024. AWS Step Functions. https://aws.
amazon.com/step-functions/. Accessed: 2024-04-17.

[11] Amazon Web Services. 2024. Configure Lambda function mem-
ory. https://docs.aws.amazon.com/lambda/latest/dg/configuration-
memory.html. Accessed: 2024-04-17.

[12] Amazon Web Services. 2024. Global Infrastructure Regions &
AZs. https://aws.amazon.com/about-aws/global-infrastructure/
regions_az/. Accessed: 2024-04-17.

[13] Amazon Web Services. 2024. Lambda Insights. https://docs.aws.
amazon.com/AmazonCloudWatch/latest/monitoring/Lambda-
Insights.html. Accessed: 2024-04-17.

[14] Amazon Web Services. 2024. What is AWS Price List? https:
//docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/price-
changes.html. Accessed: 2024-04-17.

[15] Joshua Aslan, Kieren Mayers, Jonathan G Koomey, and Chris France.
2018. Electricity intensity of internet data transmission: Untangling
the estimates. Journal of industrial ecology 22, 4 (2018), 785–798.

[16] Seth Ayers, Sara Ballan, Vanessa Gray, and Rosie McDonald. 2024.
Measuring the Emissions & Energy Footprint of the ICT Sector: Im-
plications for Climate Action. World Bank (2024).

[17] Azure. 2021. Azure Functions Invocation Trace 2021.
https://github.com/Azure/AzurePublicDataset/blob/master/
AzureFunctionsInvocationTrace2021.md Accessed: 2024-04-17.

[18] Azure. 2024. Azure Logic Apps. https://learn.microsoft.com/en-
us/azure/logic-apps/. Accessed: 2024-04-17.

[19] Ataollah Fatahi Baarzi, George Kesidis, Carlee Joe-Wong, andMoham-
mad Shahrad. 2021. OnMerits and Viability of Multi-Cloud Serverless.
In Proceedings of the ACM Symposium on Cloud Computing (SoCC ’21).
ACM, 600–608.

[20] Jonathan Barnsley, Jhénelle A Williams, Simon Chin-Yee, Anthony
Costello, Mark Maslin, Jacqueline McGlade, Richard Taylor, Matthew
Winning, and Priti Parikh. 2023. Location location location: a car-
bon footprint calculator for transparent travel to the UN Climate
Conference 2022. UCL Open Environment 5 (2023).

[21] Sanjoy Baruah and Alberto Marchetti-Spaccamela. 2023. The Com-
putational Complexity of Feasibility Analysis for Conditional DAG

Tasks. 10, 3, Article 14 (9 2023), 22 pages. https://doi.org/10.1145/
3606342

[22] Noman Bashir, Tian Guo, Mohammad Hajiesmaili, David Irwin,
Prashant Shenoy, Ramesh Sitaraman, Abel Souza, and Adam Wier-
man. 2021. Enabling sustainable clouds: The case for virtualizing
the energy system. In Proceedings of the ACM Symposium on Cloud
Computing. 350–358.

[23] Lotfi Belkhir and Ahmed Elmeligi. 2018. Assessing ICT global emis-
sions footprint: Trends to 2040 & recommendations. Journal of cleaner
production 177 (2018), 448–463.

[24] John L Bresina. 1996. Heuristic-biased stochastic sampling. In Pro-
ceedings of the thirteenth national conference on Artificial intelligence-
Volume 1. 271–278.

[25] Canada Energy Regulator. 2024. Provincial and Territorial Energy Pro-
files – Quebec. https://www.cer-rec.gc.ca/en/data-analysis/energy-
markets/provincial-territorial-energy-profiles/provincial-
territorial-energy-profiles-quebec.html. Accessed: 2024-04-
17.

[26] Mohak Chadha, Thandayuthapani Subramanian, Eishi Arima,
Michael Gerndt, Martin Schulz, and Osama Abboud. 2023. Green-
Courier: Carbon-Aware Scheduling for Serverless Functions. In Pro-
ceedings of the 9th International Workshop on Serverless Computing.
18–23.

[27] Xinghan Chen, Ling-Hong Hung, Robert Cordingly, and Wes Lloyd.
2023. X86 vs. ARM64: An Investigation of Factors Influencing Server-
less Performance. In Proceedings of the 9th International Workshop on
Serverless Computing. 7–12.

[28] Marcin Copik, Grzegorz Kwasniewski, Maciej Besta, Michal Pod-
stawski, and Torsten Hoefler. 2021. SeBS: A serverless benchmark
suite for function-as-a-service computing. In Proceedings of the 22nd
International Middleware Conference. 64–78.

[29] Robert Cordingly, Jasleen Kaur, Divyansh Dwivedi, and Wes Lloyd.
2023. Towards Serverless Sky Computing: An Investigation on Global
WorkloadDistribution toMitigate Carbon Intensity, Network Latency,
and Cost. In 2023 IEEE International Conference on Cloud Engineering
(IC2E). IEEE, 59–69.

[30] Vlad C Coroama, Lorenz M Hilty, Ernst Heiri, and Frank M Horn.
2013. The direct energy demand of internet data flows. Journal of
Industrial Ecology 17, 5 (2013), 680–688.

[31] John D. Wilson and Zach Zimmerman. 2023. The Era of Flat Power
Demand is Over. https://gridstrategiesllc.com/wp-content/uploads/
2023/12/National-Load-Growth-Report-2023.pdf Accessed: 2024-04-
17.

[32] Mehiar Dabbagh, Bechir Hamdaoui, Ammar Rayes, and Mohsen
Guizani. 2017. Shaving data center power demand peaks through
energy storage and workload shifting control. IEEE Transactions on
Cloud Computing 7, 4 (2017), 1095–1108.

[33] Datadog. 2023. The State of Serverless 2023. https://www.datadoghq.
com/state-of-serverless/. Accessed on 2024-03-29..

[34] Benjamin Davy. 2021. Building an AWS EC2 Carbon Emissions
Dataset. https://medium.com/teads-engineering/building-an-aws-
ec2-carbon-emissions-dataset-3f0fd76c98ac/. (2021). Accessed:
2024-04-17.

[35] Miyuru Dayarathna, Yonggang Wen, and Rui Fan. 2015. Data center
energy consumption modeling: A survey. IEEE Communications
surveys & tutorials 18, 1 (2015), 732–794.

[36] Simon Eismann, Johannes Grohmann, Erwin Van Eyk, Nikolas Herbst,
and Samuel Kounev. 2020. Predicting the costs of serverless work-
flows. In Proceedings of the ACM/SPEC international conference on
performance engineering. 265–276.

[37] Electricity Maps. 2022. Marginal vs average: which one to use for real-
time decisions? https://www.electricitymaps.com/blog/marginal-vs-
average-real-time-decision-making. Accessed: 2024-08-10.

https://dl.acm.org/doi/pdf/10.1145/3483410
https://aws.amazon.com/blogs/industries/four-trends-driving-global-utility-digitization/
https://aws.amazon.com/blogs/industries/four-trends-driving-global-utility-digitization/
https://aws.amazon.com/dynamodb/pricing/
https://aws.amazon.com/dynamodb/pricing/
https://aws.amazon.com/ec2/pricing/on-demand/
https://aws.amazon.com/sns/pricing/
https://aws.amazon.com/sns/pricing/
https://aws.amazon.com/lambda/pricing/
https://aws.amazon.com/lambda/pricing/
https://aws.amazon.com/step-functions/
https://aws.amazon.com/step-functions/
https://docs.aws.amazon.com/lambda/latest/dg/configuration-memory.html
https://docs.aws.amazon.com/lambda/latest/dg/configuration-memory.html
https://aws.amazon.com/about-aws/global-infrastructure/regions_az/
https://aws.amazon.com/about-aws/global-infrastructure/regions_az/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/Lambda-Insights.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/Lambda-Insights.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/Lambda-Insights.html
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/price-changes.html
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/price-changes.html
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/price-changes.html
https://github.com/Azure/AzurePublicDataset/blob/master/AzureFunctionsInvocationTrace2021.md
https://github.com/Azure/AzurePublicDataset/blob/master/AzureFunctionsInvocationTrace2021.md
https://learn.microsoft.com/en-us/azure/logic-apps/
https://learn.microsoft.com/en-us/azure/logic-apps/
https://doi.org/10.1145/3606342
https://doi.org/10.1145/3606342
https://www.cer-rec.gc.ca/en/data-analysis/energy-markets/provincial-territorial-energy-profiles/provincial-territorial-energy-profiles-quebec.html
https://www.cer-rec.gc.ca/en/data-analysis/energy-markets/provincial-territorial-energy-profiles/provincial-territorial-energy-profiles-quebec.html
https://www.cer-rec.gc.ca/en/data-analysis/energy-markets/provincial-territorial-energy-profiles/provincial-territorial-energy-profiles-quebec.html
https://gridstrategiesllc.com/wp-content/uploads/2023/12/National-Load-Growth-Report-2023.pdf
https://gridstrategiesllc.com/wp-content/uploads/2023/12/National-Load-Growth-Report-2023.pdf
https://www.datadoghq.com/state-of-serverless/
https://www.datadoghq.com/state-of-serverless/
https://medium.com/teads-engineering/building-an-aws-ec2-carbon-emissions-dataset-3f0fd76c98ac/
https://medium.com/teads-engineering/building-an-aws-ec2-carbon-emissions-dataset-3f0fd76c98ac/
https://www.electricitymaps.com/blog/marginal-vs-average-real-time-decision-making
https://www.electricitymaps.com/blog/marginal-vs-average-real-time-decision-making

[38] Electricity Maps. 2023. Real-time Electricity Map. https://www.
electricitymaps.com. Accessed: 2024-04-17.

[39] Xiaobo Fan, Wolf-Dietrich Weber, and Luiz Andre Barroso. 2007.
Power provisioning for a warehouse-sized computer. ACM SIGARCH
computer architecture news 35, 2 (2007), 13–23.

[40] Marion Ficher, Françoise Berthoud, Anne-Laure Ligozat, Patrick
Sigonneau, Maxime Wisslé, and Badis Tebbani. 2021. Assessing the
carbon footprint of the data transmission on a backbone network. In
2021 24th Conference on Innovation in Clouds, Internet and Networks
and Workshops (ICIN). IEEE, 105–109.

[41] Wedan Emmanuel Gnibga, Anne Blavette, and Anne-Cécile Orgerie.
2023. Renewable energy in data centers: the dilemma of electrical grid
dependency and autonomy costs. IEEE Transactions on Sustainable
Computing (2023).

[42] Google. 2021. We now do more computing where there’s cleaner en-
ergy. https://blog.google/outreach-initiatives/sustainability/carbon-
aware-computing-location/ Accessed: 2024-04-17.

[43] Google. 2022. Our data centers now work harder when the sun shines
and wind blows. https://blog.google/inside-google/infrastructure/
data-centers-work-harder-sun-shines-wind-blows/. Accessed: 2024-
08-25.

[44] Google Cloud Platform. 2024. GCP Workflows. https://cloud.google.
com/workflows/. Accessed: 2024-04-17.

[45] Alex Grasas, Angel A Juan, Javier Faulin, Jésica De Armas, and Helena
Ramalhinho. 2017. Biased randomization of heuristics using skewed
probability distributions: A survey and some applications. Computers
& Industrial Engineering 110 (2017), 216–228.

[46] Walid A Hanafy, Qianlin Liang, Noman Bashir, David Irwin, and
Prashant Shenoy. 2023. CarbonScaler: Leveraging Cloud Workload
Elasticity for Optimizing Carbon-Efficiency. Proceedings of the ACM
on Measurement and Analysis of Computing Systems 7, 3 (2023), 1–28.

[47] Camilla Hodgson. 2024. Booming AI demand threatens global elec-
tricity supply. https://www.ft.com/content/b7570359-f809-49ce-
8cd5-9166d36a057b Accessed: 2024-04-17.

[48] INO. 2023. Video Analytics Dataset. https://www.ino.ca/en/
technologies/video-analytics-dataset/. Accessed: 2024-04-17.

[49] Paras Jain, Sam Kumar, Sarah Wooders, Shishir G Patil, Joseph E
Gonzalez, and Ion Stoica. 2023. Skyplane: Optimizing transfer cost
and throughput using Cloud-Aware overlays. In 20th USENIX Sym-
posium on Networked Systems Design and Implementation (NSDI 23).
1375–1389.

[50] Yankai Jiang, Rohan Basu Roy, Baolin Li, and Devesh Tiwari. 2024.
EcoLife: Carbon-Aware Serverless Function Scheduling for Sustain-
able Computing. arXiv:2409.02085 [cs.DC] https://arxiv.org/abs/
2409.02085

[51] Artjom Joosen, Ahmed Hassan, Martin Asenov, Rajkarn Singh, Luke
Darlow, Jianfeng Wang, and Adam Barker. 2023. How Does It Func-
tion? Characterizing Long-Term Trends in Production Serverless
Workloads. In Proceedings of the 2023 ACM Symposium on Cloud Com-
puting (SoCC ’23). ACM, 443–458.

[52] Prajakta S Kalekar et al. 2004. Time series forecasting using holt-
winters exponential smoothing. Kanwal Rekhi school of information
Technology 4329008, 13 (2004), 1–13.

[53] Alexey Karyakin and Kenneth Salem. 2017. An analysis of memory
power consumption in database systems. In Proceedings of the 13th
International Workshop on Data Management on New Hardware. 1–9.

[54] Jeongchul Kim and Kyungyong Lee. 2019. FunctionBench: A suite
of workloads for serverless cloud function service. In 2019 IEEE 12th
International Conference on Cloud Computing (CLOUD). IEEE, 502–
504.

[55] Iwona Kotlarska, Andrzej Jackowski, Krzysztof Lichota, Michal Wel-
nicki, Cezary Dubnicki, and Konrad Iwanicki. 2023. InftyDedup:
Scalable and Cost-Effective Cloud Tiering with Deduplication. In 21st
USENIX Conference on File and Storage Technologies (FAST 23). 33–48.

[56] Loïc Lannelongue, Jason Grealey, and Michael Inouye. 2021. Green al-
gorithms: quantifying the carbon footprint of computation. Advanced
science 8, 12 (2021), 2100707.

[57] Daphne Leprince-Ringuet. 2021. How clean is cloud comput-
ing? New data reveals how green Google’s data centers really
are. https://www.zdnet.com/article/how-clean-is-cloud-computing-
new-data-reveals-how-green-googles-data-centers-really-are/. Ac-
cessed: 2024-04-17.

[58] Changyuan Lin, NimaMahmoudi, Caixiang Fan, andHamzeh Khazaei.
2023. Fine-Grained Performance and CostModeling andOptimization
for FaaS Applications. IEEE Transactions on Parallel and Distributed
Systems 34, 1 (2023), 180–194.

[59] Changyuan Lin and Mohammad Shahrad. 2024. Bridging the Sustain-
ability Gap in Serverless through Observability and Carbon-Aware
Pricing. In 3rd Workshop on Sustainable Computer Systems (HotCarbon
’24).

[60] Zhenhua Liu, Minghong Lin, Adam Wierman, Steven H Low, and
Lachlan LH Andrew. 2011. Geographical load balancing with renew-
ables. ACM SIGMETRICS Performance Evaluation Review 39, 3 (2011),
62–66.

[61] Zhenhua Liu, Minghong Lin, Adam Wierman, Steven H Low, and
Lachlan LH Andrew. 2011. Greening geographical load balancing.
ACM SIGMETRICS Performance Evaluation Review 39, 1 (2011), 193–
204.

[62] Zhenhua Liu, Adam Wierman, Yuan Chen, Benjamin Razon, and Ni-
angjun Chen. 2013. Data center demand response: Avoiding the coin-
cident peak via workload shifting and local generation. In Proceedings
of the ACM SIGMETRICS/international conference on Measurement and
modeling of computer systems. 341–342.

[63] Pedro García López, Aitor Arjona, Josep Sampé, Aleksander Slomin-
ski, and Lionel Villard. 2020. Triggerflow: trigger-based orchestration
of serverless workflows. In Proceedings of the 14th ACM International
Conference on Distributed and Event-Based Systems (DEBS ’20). ACM,
3–14.

[64] Jianying Luo, Lei Rao, and Xue Liu. 2013. Temporal load balancing
with service delay guarantees for data center energy cost optimization.
IEEE Transactions on Parallel and Distributed Systems 25, 3 (2013), 775–
784.

[65] Ashraf Mahgoub, Edgardo Barsallo Yi, Karthick Shankar, Eshaan
Minocha, Sameh Elnikety, Saurabh Bagchi, and Somali Chaterji. 2022.
WISEFUSE: Workload Characterization and DAG Transformation
for Serverless Workflows. Proc. ACM Meas. Anal. Comput. Syst. 6, 2,
Article 26 (6 2022), 28 pages.

[66] Diptyaroop Maji, Noman Bashir, David Irwin, Prashant Shenoy, and
Ramesh K Sitaraman. 2024. The Green Mirage: Impact of Location-
and Market-based Carbon Intensity Estimation on Carbon Optimiza-
tion Efficacy. In Proceedings of the 15th ACM International Confer-
ence on Future and Sustainable Energy Systems (e-Energy ’24). ACM,
256–267.

[67] Diptyaroop Maji, Ben Pfaff, Vipin PR, Rajagopal Sreenivasan, Victor
Firoiu, Sreeram Iyer, Colleen Josephson, Zhelong Pan, and Ramesh K
Sitaraman. 2023. Bringing Carbon Awareness to Multi-cloud Appli-
cation Delivery. In Proceedings of the 2nd Workshop on Sustainable
Computer Systems. 1–6.

[68] Jens Malmodin. 2020. Science & Society Forum: Växande IKT-sektor
och fler datacenter – hur påverkas elförsörjningen? (2020). https://
www.youtube.com/watch?v=Xo0PB5i_b4Y&t=2520s IVA-conference
Science & Society Forum.

[69] Jens Malmodin, Nina Lövehagen, Pernilla Bergmark, and Dag Lundén.
2024. ICT sector electricity consumption and greenhouse gas emis-
sions – 2020 outcome. Telecommunications Policy (2024), 102701.

[70] Matt Adorjan. 2024. AWS Latency Monitoring. https://www.
cloudping.co/grid. Accessed: 2024-04-17.

https://www.electricitymaps.com
https://www.electricitymaps.com
https://blog.google/outreach-initiatives/sustainability/carbon-aware-computing-location/
https://blog.google/outreach-initiatives/sustainability/carbon-aware-computing-location/
https://blog.google/inside-google/infrastructure/data-centers-work-harder-sun-shines-wind-blows/
https://blog.google/inside-google/infrastructure/data-centers-work-harder-sun-shines-wind-blows/
https://cloud.google.com/workflows/
https://cloud.google.com/workflows/
https://www.ft.com/content/b7570359-f809-49ce-8cd5-9166d36a057b
https://www.ft.com/content/b7570359-f809-49ce-8cd5-9166d36a057b
https://www.ino.ca/en/technologies/video-analytics-dataset/
https://www.ino.ca/en/technologies/video-analytics-dataset/
https://arxiv.org/abs/2409.02085
https://arxiv.org/abs/2409.02085
https://arxiv.org/abs/2409.02085
https://www.zdnet.com/article/how-clean-is-cloud-computing-new-data-reveals-how-green-googles-data-centers-really-are/
https://www.zdnet.com/article/how-clean-is-cloud-computing-new-data-reveals-how-green-googles-data-centers-really-are/
https://www.youtube.com/watch?v=Xo0PB5i_b4Y&t=2520s
https://www.youtube.com/watch?v=Xo0PB5i_b4Y&t=2520s
https://www.cloudping.co/grid
https://www.cloudping.co/grid

[71] Nicholas Metropolis and Stanislaw Ulam. 1949. The Monte Carlo
Method. J. Amer. Statist. Assoc. 44, 247 (1949), 335–341.

[72] Michael Sauter. 2020. Crane - Lift containers with ease. https://
michaelsauter.github.io/crane/index.html. Accessed: 2024-04-17.

[73] Janine Morley, Kelly Widdicks, and Mike Hazas. 2018. Digitalisation,
energy and data demand: The impact of Internet traffic on overall
and peak electricity consumption. Energy Research & Social Science
38 (2018), 128–137.

[74] DavidMytton andMasaō Ashtine. 2022. Sources of data center energy
estimates: A comprehensive review. Joule 6, 9 (2022), 2032–2056.

[75] Deepak Narayanan, Keshav Santhanam, Fiodar Kazhamiaka, Amar
Phanishayee, and Matei Zaharia. 2020. Analysis and exploitation of
dynamic pricing in the public cloud for ML training. In VLDB DISPA
Workshop 2020.

[76] Thong Trung Nguyen, Thu Anh Thi Pham, and Huong Thi Xuan
Tram. 2020. Role of information and communication technologies
and innovation in driving carbon emissions and economic growth in
selected G-20 countries. Journal of environmental management 261
(2020), 110162.

[77] Intergovernmental Panel on Climate Change (IPCC). 2023. Annex VII:
Glossary. Cambridge University Press, 2215–2256.

[78] Brad Plumer and Nadja Popovich. 2024. A New Surge in
Power Use Is Threatening U.S. Climate Goals. https:
//www.nytimes.com/interactive/2024/03/13/climate/electric-
power-climate-change.html Accessed: 2024-04-17.

[79] Lorenzo Posani, Alessio Paccoia, and Marco Moschettini. 2018.
The carbon footprint of distributed cloud storage. arXiv preprint
arXiv:1803.06973 (2018).

[80] Ana Radovanović, Ross Koningstein, Ian Schneider, Bokan Chen,
Alexandre Duarte, Binz Roy, Diyue Xiao, Maya Haridasan, Patrick
Hung, Nick Care, et al. 2022. Carbon-aware computing for datacen-
ters. IEEE Transactions on Power Systems 38, 2 (2022), 1270–1280.

[81] Sabidur Rahman, Abhishek Gupta, Massimo Tornatore, and
Biswanath Mukherjee. 2017. Dynamic workload migration over
backbone network to minimize data center electricity cost. IEEE
Transactions on Green Communications and Networking 2, 2 (2017),
570–579.

[82] Joseph Rand, Rose Strauss, Will Gorman, Joachim Seel, Julie Mul-
vaney Kemp, Seongeun Jeong, Dana Robson, and Wiser Ryan. 2022.
Queued Up: Characteristics of Power Plants Seeking Transmission
Interconnection As of the End of 2022. https://emp.lbl.gov/sites/
default/files/emp-files/queued_up_2022_04-06-2023.pdf Accessed:
2024-04-17.

[83] Ray. 2024. Welcome to Ray. https://docs.ray.io/en/latest/. Accessed:
2024-08-11.

[84] Sasko Ristov, Stefan Pedratscher, and Thomas Fahringer. 2021. xAFCL:
Run scalable function choreographies across multiple FaaS systems.
IEEE Transactions on Services Computing (2021).

[85] Francisco Romero, Mark Zhao, Neeraja J. Yadwadkar, and Christos
Kozyrakis. 2021. Llama: A Heterogeneous & Serverless Framework
for Auto-Tuning Video Analytics Pipelines. In Proceedings of the ACM
Symposium on Cloud Computing (SoCC ’21). ACM, 1–17.

[86] Ghazal Sadeghian, Mohamed Elsakhawy, Mohanna Shahrad, Joe Hat-
tori, and Mohammad Shahrad. 2023. UnFaaSener: Latency and Cost
Aware Offloading of Functions from Serverless Platforms. In 2023
USENIX Annual Technical Conference (USENIX ATC 23). 879–896.

[87] Trever Schirmer, Nils Japke, Sofia Greten, Tobias Pfandzelter, and
David Bermbach. 2023. The Night Shift: Understanding Performance
Variability of Cloud Serverless Platforms. In Proceedings of the 1st
Workshop on SErverless Systems, Applications and MEthodologies. 27–
33.

[88] Anders SG Andrae. 2020. New perspectives on internet electricity
use in 2030. Engineering and Applied Science Letter 3, 2 (2020), 19–31.

[89] Mohammad Shahrad, Rodrigo Fonseca, Inigo Goiri, Gohar Chaudhry,
Paul Batum, Jason Cooke, Eduardo Laureano, Colby Tresness, Mark
Russinovich, and Ricardo Bianchini. 2020. Serverless in the wild:
Characterizing and optimizing the serverless workload at a large
cloud provider. In 2020 USENIX annual technical conference (USENIX
ATC 20). 205–218.

[90] Prateek Sharma. 2023. Challenges and opportunities in sustainable
serverless computing. ACM SIGENERGY Energy Informatics Review 3,
3 (2023), 53–58.

[91] Zhiming Shen, Qin Jia, Gur-Eyal Sela, Ben Rainero, Weijia Song,
Robbert van Renesse, and Hakim Weatherspoon. 2016. Follow the
sun through the clouds: Application migration for geographically
shifting workloads. In Proceedings of the Seventh ACM Symposium on
Cloud Computing. 141–154.

[92] Foteini Strati, Paul Elvinger, Tolga Kerimoglu, and Ana Klimovic.
2024. ML Training with Cloud GPU Shortages: Is Cross-Region the
Answer?. In Proceedings of the 4th Workshop on Machine Learning and
Systems. 107–116.

[93] Emma Strubell, Ananya Ganesh, and Andrew McCallum. 2020. En-
ergy and Policy Considerations for Modern Deep Learning Research.
Proceedings of the AAAI Conference on Artificial Intelligence 09 (2020),
13693–13696.

[94] Thanathorn Sukprasert, Noman Bashir, Abel Souza, David Irwin, and
Prashant Shenoy. 2024. On the Implications of Choosing Average
versus Marginal Carbon Intensity Signals on Carbon-aware Opti-
mizations. In Proceedings of the 15th ACM International Conference on
Future and Sustainable Energy Systems. 422–427.

[95] Thanathorn Sukprasert, Abel Souza, Noman Bashir, David Irwin, and
Prashant Shenoy. 2023. Spatiotemporal Carbon-aware Scheduling in
the Cloud: Limits and Benefits. In Companion Proceedings of the 14th
ACM International Conference on Future Energy Systems.

[96] Thanathorn Sukprasert, Abel Souza, Noman Bashir, David Irwin,
and Prashant Shenoy. 2024. On the Limitations of Carbon-Aware
Temporal and Spatial Workload Shifting in the Cloud. In Nineteenth
European Conference on Computer Systems (EuroSys), Athens, Greece.

[97] Seyedali Tabaeiaghdaei, Simon Scherrer, Jonghoon Kwon, and Adrian
Perrig. 2023. Carbon-Aware Global Routing in Path-Aware Networks.
In Proceedings of the 14th ACM International Conference on Future
Energy Systems. 144–158.

[98] Thoughtworks. 2023. Cloud Carbon footprint Methodology. https://
www.cloudcarbonfootprint.org/docs/methodology/. Accessed: 2024-
04-17.

[99] Adel Nadjaran Toosi, Chenhao Qu, Marcos Dias de Assunção, and Ra-
jkumar Buyya. 2017. Renewable-aware geographical load balancing
of web applications for sustainable data centers. Journal of Network
and Computer Applications 83 (2017), 155–168.

[100] UBC Cloud Innovation Centre. 2024. https://github.com/UBC-CIC/
document-chat/tree/main. Accessed: 2024-09-11.

[101] vHive Ecosystem. 2024. vSwarm: A suite of representative serverless
cloud- agnostic (i.e., dockerized) benchmarks. https://github.com/
vhive-serverless/vSwarm Accessed: 2024-04-17.

[102] Liang Wang, Mengyuan Li, Yinqian Zhang, Thomas Ristenpart, and
Michael Swift. 2018. Peeking behind the curtains of serverless plat-
forms. In 2018 USENIX Annual Technical Conference (USENIX ATC 18).
133–146.

[103] Philipp Wiesner, Ilja Behnke, Dominik Scheinert, Kordian Gontarska,
and Lauritz Thamsen. 2021. Let’s wait awhile: How temporal work-
load shifting can reduce carbon emissions in the cloud. In Proceedings
of the 22nd International Middleware Conference. 260–272.

[104] Carole-Jean Wu, Ramya Raghavendra, Udit Gupta, Bilge Acun, New-
sha Ardalani, Kiwan Maeng, Gloria Chang, Fiona Aga, Jinshi Huang,
Charles Bai, et al. 2022. Sustainable AI: Environmental implications,
challenges and opportunities. Proceedings of Machine Learning and
Systems 4 (2022), 795–813.

https://michaelsauter.github.io/crane/index.html
https://michaelsauter.github.io/crane/index.html
https://www.nytimes.com/interactive/2024/03/13/climate/electric-power-climate-change.html
https://www.nytimes.com/interactive/2024/03/13/climate/electric-power-climate-change.html
https://www.nytimes.com/interactive/2024/03/13/climate/electric-power-climate-change.html
https://emp.lbl.gov/sites/default/files/emp-files/queued_up_2022_04-06-2023.pdf
https://emp.lbl.gov/sites/default/files/emp-files/queued_up_2022_04-06-2023.pdf
https://docs.ray.io/en/latest/
https://www.cloudcarbonfootprint.org/docs/methodology/
https://www.cloudcarbonfootprint.org/docs/methodology/
https://github.com/UBC-CIC/document-chat/tree/main
https://github.com/UBC-CIC/document-chat/tree/main
https://github.com/vhive-serverless/vSwarm
https://github.com/vhive-serverless/vSwarm

[105] Michael Wurster, Uwe Breitenbücher, Kálmán Képes, Frank Leymann,
and Vladimir Yussupov. 2018. Modeling and automated deployment
of serverless applications using TOSCA. In 2018 IEEE 11th conference
on service-oriented computing and applications (SOCA). IEEE, 73–80.

[106] Zongheng Yang, Zhanghao Wu, Michael Luo, Wei-Lin Chiang, Romil
Bhardwaj, Woosuk Kwon, Siyuan Zhuang, Frank Sifei Luan, Gautam
Mittal, Scott Shenker, and Ion Stoica. 2023. SkyPilot: An Intercloud
Broker for Sky Computing. In 20th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 23). 437–455.

[107] Xianyu Yu, Yuezhi Hu, Dequn Zhou, Qunwei Wang, Xiuzhi Sang,
and Kai Huang. 2023. Carbon emission reduction analysis for cloud
computing industry: can carbon emissions trading and technology
innovation help? Energy Economics 125 (2023), 106804.

[108] Binhang Yuan, Yongjun He, Jared Davis, Tianyi Zhang, Tri Dao, Beidi
Chen, Percy S Liang, Christopher Re, and Ce Zhang. 2022. Decentral-
ized training of foundation models in heterogeneous environments.
Advances in Neural Information Processing Systems 35 (2022), 25464–
25477.

[109] Vladimir Yussupov, Jacopo Soldani, Uwe Breitenbücher, and Frank
Leymann. 2022. Standards-based modeling and deployment of server-
less function orchestrations using BPMN and TOSCA. Software:
Practice and Experience 52, 6 (2022), 1454–1495.

[110] Yanqi Zhang, Íñigo Goiri, Gohar Irfan Chaudhry, Rodrigo Fonseca,
Sameh Elnikety, Christina Delimitrou, and Ricardo Bianchini. 2021.
Faster and cheaper serverless computing on harvested resources. In
Proceedings of the ACM SIGOPS 28th Symposium on Operating Systems
Principles. 724–739.

[111] Yanwei Zhang, Yefu Wang, and Xiaorui Wang. 2011. Greenware:
Greening cloud-scale data centers to maximize the use of renew-
able energy. In Middleware 2011: ACM/IFIP/USENIX 12th International
Middleware Conference, Lisbon, Portugal, December 12-16, 2011. Pro-
ceedings 12. Springer, 143–164.

[112] Haidong Zhao, Zakaria Benomar, Tobias Pfandzelter, and Nikolaos
Georgantas. 2022. Supporting Multi-Cloud in Serverless Computing.
In 2022 IEEE/ACM 15th International Conference on Utility and Cloud
Computing (UCC). IEEE, 285–290.

[113] Jiajia Zheng, Andrew A Chien, and Sangwon Suh. 2020. Mitigating
curtailment and carbon emissions through load migration between
data centers. Joule 4, 10 (2020), 2208–2222.

[114] Zhi Zhou, Fangming Liu, Yong Xu, Ruolan Zou, Hong Xu, John CS Lui,
and Hai Jin. 2013. Carbon-aware load balancing for geo-distributed
cloud services. In 2013 IEEE 21st International Symposium onModelling,
Analysis and Simulation of Computer and Telecommunication Systems.
IEEE, 232–241.

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Carbon Intensity Variances in Electrical Grids
	2.2 State of the Art
	2.3 Viability of Geospatial Shifting
	2.4 Serverless: A Great Candidate for Geo-Shifting

	3 Caribou: A Holistic Framework for Geospatial Shifting
	4 Workflow Model
	5 Policy
	5.1 Determining Optimal Deployment Plan
	5.2 Dynamic Triggering of Policy Determination

	6 Enforcement
	6.1 Automated Cross-Regional Deployment
	6.2 Flexible, cross-regional workflow execution

	7 Metrics
	7.1 Workflow Metrics and Models
	7.2 Metric Acquisition and Forecasting

	8 Developer Interface
	9 Evaluation
	9.1 Methodology
	9.2 Insights on Effectiveness of Geospatial Shifting
	9.3 Transmission Energy Intensity to Carbon Saving
	9.4 Carbon Efficiency and Latency Tolerance
	9.5 Efficiency of Self-Adaptive Re-Deployment
	9.6 Performance Overhead Characterization
	9.7 Adaptive Learning and Solving Period

	10 Limitations
	11 Related Work
	12 Conclusion
	Acknowledgments
	References

